您好,欢迎访问福建省农业科学院 机构知识库!

Duck cGAS inhibits DNA and RNA virus replication by activating IFNs and antiviral ISGs

文献类型: 外文期刊

作者: Lin, Chang 1 ; Zheng, Min 2 ; Xiao, Shifeng 2 ; Wang, Shao 2 ; Zhu, Xiaoli 2 ; Chen, Xiuqin 2 ; Jiang, Dandan 2 ; Zeng, Xiancheng 1 ; Chen, Shaoying 2 ; Chen, Shilong 2 ;

作者机构: 1.Fujian Agr & Forestry Univ, Coll Anim Sci, Fuzhou, Fujian, Peoples R China

2.Fujian Acad Agr Sci, Inst Anim Husb & Vet Med, Lab Anim Virol, Fuzhou, Fujian, Peoples R China

3.Longyan Univ, Coll Life Sci, Longyan, Peoples R China

关键词: duck; innate immunity; cyclic GMP-AMP synthase; antiviral function; interferon-stimulated genes; sgRNA

期刊名称:FRONTIERS IN IMMUNOLOGY ( 影响因子:7.3; 五年影响因子:8.0 )

ISSN: 1664-3224

年卷期: 2023 年 14 卷

页码:

收录情况: SCI

摘要: Cyclic GMP-AMP Synthase (cGAS) is a pivotal adaptor of the signaling pathways involving the pattern recognition receptors and plays an important role in apoptosis and immune regulation. The cGAS function in mammals has been investigated extensively; however, the function of duck cGAS (du-cGAS) in response to viral infections is still unclear. This study aimed to clone the mallard (Anas platyrhynchos) cGAS homolog to investigate the function of duck cGAS (du-cGAS) in host antiviral innate immunity. The results showed that the open reading frame (ORF) region of the du-cGAS gene was 1296 bp, encoding 432 amino acids (aa) and exhibiting similar functional domains with its chicken counterpart. Knockdown of the endogenous du-cGAS by specific sgRNA strongly increased the replication of DNA viruses, including duck adenovirus B2 (DAdV B2) and duck short beak and dwarfism syndrome virus (SBDSV). However, the knockout did not impair the replication of novel duck reovirus (NDRV), an RNA virus. Furthermore, the mRNA expressions of type I interferon (IFNs) and vital interferon-stimulated genes (ISGs) were remarkably reduced in the du-cGAS knockout DEF cell line. Inversely, du-cGAS overexpression greatly activated the transcription of IFN-alpha, IFN-beta, and vital ISGs, and impaired the replication of DAdV B2, SBDSV, and NDRV in the DEF cell line. Importantly, we found that a deletion of 68 aa in the N terminus didn't impair the antiviral function of du-cGAS. Overexpressing NTase Core, C-Domain (Mab21), or Zinc-Ribbon domain independently had no antiviral effects. Generally, these results reveal that du-cGAS is a vital component of the innate immune system of ducks, with a universal antiviral activity, and provides a useful strategy for the control of waterfowl viral diseases.

  • 相关文献
作者其他论文 更多>>