您好,欢迎访问北京市农林科学院 机构知识库!

Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform

文献类型: 外文期刊

作者: Li, Fang 1 ; Lu, Anxiang 1 ; Wang, Jihua 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Agr Stand & Testing, Beijing 100097, Peoples R China

2.Beijing Municipal Key Lab Agr Environm Monitoring, Beijing 100097, Peoples R China

3.Minist Agr, Risk Assessment Lab Agroprod Beijing, Beijing 100097, Peoples R China

关键词: X-ray fluorescence;heavy metal;soil;wavelet transform

期刊名称:INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH ( 影响因子:3.39; 五年影响因子:3.789 )

ISSN: 1660-4601

年卷期: 2017 年 14 卷 10 期

页码:

收录情况: SCI

摘要: A modeling method based on discrete wavelet transform (DWT) was introduced to analyze the concentration of chromium, copper, zinc, arsenic and lead in soil with a portable X-ray fluorescence (XRF) spectrometer. A total of 111 soil samples were collected and observed. Denoising and baseline correction were performed on each spectrum before modeling. The optimum conditions for pre-processing were denoising with Coiflet 3 on the 3rd level and baseline correction with Coiflet 3 on the 9th level. Calibration curves were established for the five heavy metals (HMs). The detection limits were compared before and after the application of DWT, the qualitative detection limits and the quantitative detection limits were calculated to be three and ten times as high as the standard deviation with silicon dioxide (blank), respectively. The results showed that the detection limits of the instrument using DWT were lower, and that they were below national soil standards; the determination coefficients (R-2) based on DWT-processed spectra were higher, and ranged from 0.990 to 0.996, indicating a high degree of linearity between the contents of the HMs in soil and the XRF spectral characteristic peak intensity with the instrument measurement.

  • 相关文献

[1]Determination of Cr, Cu, Zn, Pb and As in Soil by Field Portable X-Ray Fluorescence Spectrometry. Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Lu An-xiang,Wang Ji-hua,Pan Li-gang,Han Ping,Han Ying. 2010

[2]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[3]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[4]Heavy metals in greenhouse vegetable soils in Beijing: accumulation characteristics of copper and cadmium. Zhang Hui-zhi,Li Hong,Wang Zhi,Zhou Lian-di. 2012

[5]Development of Soil Heavy Metal Detector Based onXRF Technology. WenshenJia,LigangPan,YaleiWang,JihuaWang. 2015

[6]Protective function of narrow grass hedges on soil and water loss on sloping croplands in Northern China. Xiao, Bo,Wang, Qing-hai,Wu, Ju-ying,Huang, Chuan-wei,Yu, Ding-fang,Xiao, Bo.

[7]Accumulation Characteristics of Copper and Cadmium in Greenhouse Vegetable Soils In Tongzhou District Of Beijing. H. Z. Zhang,H. Li,Z. Wang. 2013

[8]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[9]Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?. Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang,Xu, Li,Cao, Shanshan,Wang, Jihua,Lu, Anxiang. 2016

[10]Establishment and Improvement of Portable X-Ray Fluorescence Spectrometer Detection Model Based on Wavelet Transform. Li Fang,Wang Ji-hua,Li Fang,Wang Ji-hua,Lu An-xiang,Han Ping. 2015

[11]Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Lu, Anxiang,Zhang, Shuzhen,Lu, Anxiang,Wang, Jihua,Han, Ping,Qin, Xiangyang,Wang, Kaiyi.

[12]Relative influence of sediment variables on mangrove community assembly in Leizhou Peninsula, China. Liu, Jing,Ma, Keming,Qu, Laiye,Liu, Jing.

[13]Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Liu, Wei,Huo, Rong,Liang, Shuxuan,Xu, Junxiang,Li, Jijin,Zhao, Tongke,Wang, Shutao.

[14]The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L.. Zheng, Ruilun,Li, Cui,Chen, Jie,Wu, Juying,Wang, Qinghai,Sun, Guoxin,Xie, Zubin.

[15]Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks. Chen, Min,Huang, Ping,Chen, Li. 2013

[16]A Study of FTIR Spectrometry Based on a Long Optical Path on the Emission Rules of Nitrous Oxide from Soil. Xiao Guang-dong,Zhang Dong-yan,Liao Tong-qing,Xiao Guang-dong,Zheng Ling,Dong Da-ming,Zhang Bao-hua. 2015

[17]Dissipation and Residues of Flutriafol in Wheat and Soil Under Field Conditions. Yu, Pingzhong,Liu, Fengmao,Yu, Pingzhong,Jia, Chunhong,Song, Wencheng. 2012

[18]Preliminary Research on the Adaptability of NIR Quantitative Calibration Models for Metal Elements in Soil. Pan Li-gang. 2017

[19]Residues and sources of DDT and HCH in agricultural soils in the suburb of Beijing, China. Li, Xinrong,Zhao, Tongke,Li, Shunjiang,Zhang, Chengjun. 2014

[20]Accumulation Characteristics of Copper and Cadmium in Greenhouse Vegetable Soils In Tongzhou District Of Beijing. Zhang, H. Z.,Li, H.,Wang, Z.,Zhou, L. D.. 2011

作者其他论文 更多>>