The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager
文献类型: 外文期刊
作者: Yang, Guijun 1 ; Li, Changchun 3 ; Wang, Yanjie 1 ; Yuan, Huanhuan 4 ; Feng, Haikuan 1 ; Xu, Bo 1 ; Yang, Xiaodong 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Peoples R China
4.Henan Polytech Univ,
关键词: UAV;snapshot hyperspectral imaging;radiometric response variation;POS interpolation;hyperspectral DOM;radiometric calibration
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2017 年 9 卷 7 期
页码:
收录情况: SCI
摘要: Hyperspectral remote sensing is used in precision agriculture to remotely and quickly acquire crop phenotype information. This paper describes the generation of a digital orthophoto map (DOM) and radiometric calibration for images taken by a miniaturized snapshot hyperspectral camera mounted on a lightweight unmanned aerial vehicle (UAV). The snapshot camera is a relatively new type of hyperspectral sensor that can acquire an image cube with one spectral and two spatial dimensions at one exposure. The images acquired by the hyperspectral snapshot camera need to be mosaicked together to produce a DOM and radiometrically calibrated before analysis. However, the spatial resolution of hyperspectral cubes is too low to mosaic the images together. Furthermore, there are no systematic radiometric calibration methods or procedures for snapshot hyperspectral images acquired from low-altitude carrier platforms. In this study, we obtained hyperspectral imagery using a snapshot hyperspectral sensor mounted on a UAV. We quantitatively evaluated the radiometric response linearity (RRL) and radiometric response variation (RRV) and proposed a method to correct the RRV effect. We then introduced a method to interpolate position and orientation system (POS) information and generate a DOM with low spatial resolution and a digital elevation model (DEM) using a 3D mesh model built from panchromatic images with high spatial resolution. The relative horizontal geometric precision of the DOM was validated by comparison with a DOM generated from a digital RGB camera. A surface crop model (CSM) was produced from the DEM, and crop height for 48 sampling plots was extracted and compared with the corresponding field-measured crop height to verify the relative precision of the DEM. Finally, we applied two absolute radiometric calibration methods to the generated DOM and verified their accuracy via comparison with spectra measured with an ASD Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA). The DOM had high relative horizontal accuracy, and compared with the digital camera-derived DOM, spatial differences were below 0.05 m (RMSE = 0.035). The determination coefficient for a regression between DEM-derived and field-measured crop height was 0.680. The radiometric precision was 5% for bands between 500 and 945 nm, and the reflectance curve in the infrared spectral region did not decrease as in previous research. The pixel and data sizes for the DOM corresponding to a field area of approximately 85 m x 34 m were small (0.67 m and approximately 13.1 megabytes, respectively), which is convenient for data transmission, preprocessing and analysis. The proposed method for radiometric calibration and DOM generation from hyperspectral cubes can be used to yield hyperspectral imagery products for various applications, particularly precision agriculture.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



