您好,欢迎访问吉林省农业科学院 机构知识库!

In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization

文献类型: 外文期刊

作者: Lin, Xiuyun 1 ; Long, Likun 2 ; Shan, Xiaohui 2 ; Zhang, Sanyuan 2 ; Shen, Sile 3 ; Liu, Bao;

作者机构: 1.NE Normal Univ, Inst Genet & Cytol, Lab Plant Mol Epigenet, Changchun 130024, Peoples R China

2.NE Normal Univ, Inst Genet & Cytol, Lab Plant Mol Epigenet, Changchun 130024, Peoples R China; NE Normal Univ, Key Lab Appl Stat MOE, Changchun 130024, Peoples R China; Jilin Acad Agr Sci, Gongzuling 136100, Peoples R China; Jilin Univ, Natl Key Lab Superhard Mat, Changchun 130020, Peoples R China

3.NE Normal Univ, Inst Genet &

关键词: hydrostatic pressure;MITEs;rice;tagging;transposon mobilization

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN: 0022-0957

年卷期: 2006 年 57 卷 10 期

页码:

收录情况: SCI

摘要: The miniature Ping (mPing) is a recently discovered endogenous miniature inverted repeat transposable element (MITE) in rice, which can be mobilized by tissue culture or irradiation. It is reported here that mPing, together with one of its putative transposase-encoding partners, Pong, was efficiently mobilized in somatic cells of intact rice plants of two distinct cultivars derived from germinating seeds subjected to high hydrostatic pressure, whereas the other autonomous element of mPing, Ping, remained static in the plants studied. mPing excision was detected in several plants of both cultivars; in the treated. generation (P-0), which were selected based on their novel phenotypes. Southern blot analysis and transposon-display assay on selfed progenies (P-1 generation) of two selected P-0 plants, one from each of the cultivars, revealed polymorphic banding patterns consistent with mobilization of mPing and Pong. Various mPing excisions and de novo insertions, as detected by element-bracketing, locus-specific PCR assays, occurred in the different P-1 plants of both cultivars. Pong excision at one locus for each cultivar was also detected by using a Pong internal primer together with locus-specific flanking primers in the P, plants. In contrast to the pressurized plants, immobility of both mPing and Pong in control plants, and the absence of within-cultivar heterozygosity at the analysed loci were verified by Southern blotting and/or locus-assay. Sequencing at 18 mPing empty donor sites isolated from the pressurized plants indicated properties characteristic of the element excision. Sequence-based mapping of 10 identified mPing de novo insertions from P, progenies of pressurized plants indicated that all were in unique or low-copy regions, conforming with the targeting propensity of mPing. No evidence for further mPing activity was detected in the P-2 plants tested. In spite of the high activity of mPing and Pong in the pressurized plants, amplified fragment length polymorphism (AFLP) analysis denoted their general genomic stability, and several potentially active retrotransposons also remained largely immobile. Further investigation showed that the same hydrostatic pressure treatments also caused mobilization of mPing in the standard laboratory cultivar for japonica rice, Nipponbare. Thus, a simple and robust approach for in planta MITE-mobilization in rice has been established by using high hydrostatic pressure treatment, which may be useful as an alternative for gene-tagging in this important crop plant.

  • 相关文献

[1]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[2]Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. Qi, Dongling,Cao, Guilan,Han, Longzhi,Qi, Dongling,Guo, Guizhen,Zhang, Junguo,Zhang, Sanyuan,Han, Longzhi,Lee, Myung-Chul,Suh, Seok-Cheol,Zhou, Qingyang. 2008

[3]Eastern Jilin Province Rice Cold Damage Risk Vulnerability Curve Established Based on CERES-Rice Model. Guo, Chunming,Zhu, Meng,Zhang, Jiquan,Cao, Tiehua. 2016

[4]Laser Irradiation-Induced DNA Methylation Changes Are Heritable and Accompanied with Transpositional Activation of mPing in Rice. Li, Siyuan,Xia, Qiong,Yu, Xiaoming,Gao, Xiang,Liu, Bao,Li, Siyuan,Wang, Fang,Ma, Jian,Kou, Hongping,Lin, Xiuyun. 2017

[5]A comparison about the paddy fields applicability of two water stress index model by infrared automatic monitoring the canopy temperature of rice. Gao, Shijie,Li, Xiaohui,Li, Jihong,Dong, Yingshan,Gao, Jiping,Zhang, Wenzhong. 2015

[6]Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Long, LK,Lin, XY,Zhai, JZ,Kou, HP,Yang, W,Liu, B. 2006

[7]Sugary Endosperm is Modulated by Starch Branching Enzyme IIa in Rice (Oryza sativa L.). Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Choi, Min-Seon,Yoon, Mi-Ra,Piao, Rihua,Chin, Joong Hyoun. 2017

[8]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[9]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[10]Fine Mapping of qTGW3-1, a QTL for 1 000-Grain Weight on Chromosome 3 in Rice. Zhang Qiang,Yao Guo-xin,Hu Guang-long,Chen Chao,Tang Bo,Zhang Hong-liang,Li Zi-chao,Zhang Qiang,Yao Guo-xin. 2012

[11]A new approach for obtaining rapid uniformity in rice (Oryza sativa L.) via a 3x x 2x cross. Xing, Shaochen,Cai, Yuhong,Zhou, Kaida. 2010

[12]Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Liang, Jing-long,Zhao, Zheng-wu,Zhang, Tao,Liang, Jing-long,Qu, Ying-ping,Ma, Xiao-ding,Cao, Gui-lan,Han, Long-zhi,Yang, Chun-gang,Zhang, San-yuan.

[13]Estimating nutrient uptake requirements for rice in China. Xu, Xinpeng,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,Xie, Jiagui,Hou, Yunpeng,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[14]Simultaneous improvement in cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Meng, Lijun,Meng, Lijun,Chen, Kai,Cui, Yanru,Xu, Jianlong,Li, Zhikang,Lin, Xiuyun,Wang, Jinming.

[15]DNA Methylation Changes Induced in Rice by Exposure to High Concentrations of the Nitric Oxide Modulator, Sodium Nitroprusside. Ou, Xiufang,Zhuang, Tingting,Yin, Wenchao,Miao, Yiling,Wang, Bo,Zhang, Yunhong,Lin, Xiuyun,Xu, Chunming,Liu, Bao,Zhuang, Tingting,Lin, Xiuyun,von Wettstein, Diter,Rustgi, Sachin,von Wettstein, Diter,Rustgi, Sachin.

[16]Identification of rice blast resistance genes using international monogenic differentials. Wang, J. C.,Wen, J. W.,Liu, W. P.,Liu, X. M.,Li, L.,Jiang, Z. Y.,Zhang, J. H.,Guo, X. L.,Ren, J. P.,Jia, Y..

作者其他论文 更多>>