您好,欢迎访问广东省农业科学院 机构知识库!

De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction

文献类型: 外文期刊

作者: Liu, Chuan-He 1 ; Fan, Chao 1 ;

作者机构: 1.Guangdong Acad Agr Sci, Inst Fruit Tree Res, Guangzhou, Guangdong, Peoples R China

2.Genet Resource Utilizat Minist Agr, Key Lab South Subtrop Fruit Biol, Guangzhou, Guangdong, Peoples R China

关键词: pineapple [Ananas comosus (L.) Merr.];floral induction;ethephon;transcriptome;differentially expressed genes (DEGs)

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL.L-1 (T1) or 2.40 mL.L-1 ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high -quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPOR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene expression profiling results. Ethephon-mediated induction likely mimics the process of vernalization in the floral transition in pineapple by increasing LTI, FT, and VRN1 expression and promoting the up-regulation of floral meristem identity genes involved in flower development. The candidate genes screened can be used in investigations of the molecular mechanisms of the flowering pathway and of various other biological mechanisms in pineapple.

  • 相关文献

[1]Influence of ethylene on adventitious root formation in mung bean hypocotyl cuttings. Pan, RC,Wang, JX,Tian, XS.

[2]Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection. Zhong, Yun,Cheng, Chunzhen,Jiang, Bo,Jiang, Nonghui,Hu, Minlun,Zhong, Guangyan,Cheng, Chunzhen,Zhang, Yongyan,Jiang, Bo,Jiang, Nonghui,Hu, Minlun,Zhong, Guangyan. 2016

[3]Gene expression changes in leaves of Citrus sinensis (L.) Osbeck infected by Citrus tristeza virus. Cheng, Chunzhen,Cheng, Chunzhen,Zhang, Yongyan,Zhong, Yun,Yang, Jiawei,Yan, Shutang.

[4]Fruit quality and differentially expressed genes of winter-harvested pineapple in response to elevated temperature over a short postharvest period. Liu, Chuan-He,Liu, Yan,Liu, Chuan-He,Liu, Yan.

[5]Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. Chen, Bingxian,Ma, Jun,Xu, Zhenjiang,Wang, Xiaofeng,Chen, Bingxian. 2016

[6]Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Varshney, Rajeev K.,Mohan, S. Murali,Gaur, Pooran M.,Pandey, Manish K.,Sawargaonkar, Shrikant L.,Chitikineni, Annapurna,Janila, Pasupuleti,Saxena, K. B.,Sharma, Mamta,Rathore, Abhishek,Mallikarjuna, Nalini,Gowda, C. L. L.,Varshney, Rajeev K.,Varshney, Rajeev K.,Varshney, Rajeev K.,Liang, Xuanqiang,Gangarao, N. V. P. R.,Pandey, Manish K.,Bohra, Abhishek,Pratap, Aditya,Datta, Subhojit,Chaturvedi, S. K.,Nadarajan, N.,Kimurto, Paul K.,Fikre, Asnake,Tripathi, Shailesh,Bharadwaj, Ch.,Anuradha, G.,Babbar, Anita,Choudhary, Arbind K.,Mhase, M. B.,Mannur, D. M.. 2013

[7]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[8]De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Dai, Fanwei,Tang, Cuiming,Wang, Zhenjiang,Luo, Guoqing,He, Li,Yao, Liuhui. 2015

[9]Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. Hong, Meiyan,Hu, Kaining,Tian, Tiantian,Li, Xia,Chen, Li,Zhang, Yan,Yi, Bin,Wen, Jing,Ma, Chaozhi,Shen, Jinxiong,Fu, Tingdong,Tu, Jinxing,Li, Xia,Chen, Li,Zhang, Yan. 2017

[10]Temporal patterns of gene expression associated with tuberous root formation and development in sweetpotato (Ipomoea batatas). Wang, Zhangying,Fang, Boping,Chen, Xinliang,Liao, Minghuan,Chen, Jingyi,Zhang, Xiongjian,Huang, Lifei,Luo, Zhongxia,Yao, Zhufang,Li, Yujun. 2015

[11]Analysis of Muscle and Ovary Transcriptome of Sus scrofa: Assembly, Annotation and Marker Discovery. Nie, Qinghua,Jia, Xinzheng,Zhang, Wei,Zhou, Xiaoning,He, Xiaomei,Zhang, Xiquan,Nie, Qinghua,Jia, Xinzheng,Zhang, Wei,Zhou, Xiaoning,He, Xiaomei,Zhang, Xiquan,Fang, Meixia. 2011

[12]Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.). Dai, Fanwei,Wang, Zhenjiang,Luo, Guoqing,Tang, Cuiming. 2015

[13]Large-scale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Wu, Hai-Bin,Gong, Hao,Liu, Peng,He, Xiao-Li,Luo, Shao-Bo,Zheng, Xiao-Ming,Zhang, Chang-Yuan,He, Xiao-Ming,Luo, Jianning.

[14]Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Zhu, Wei,Chen, Xiaoping,Li, Haifen,Zhu, Fanghe,Hong, Yanbin,Liang, Xuanqiang,Varshney, Rajeev K..

[15]Comparative Transcriptome Analysis Reveals Differential Transcription in Heat-susceptible and Heat-tolerant Pepper (Capsicum annum L.) Cultivars under Heat Stress. Li, Tao,Xu, Xiaowan,Li, Ying,Wang, Hengming,Li, Zhiliang,Li, Zhenxing,Li, Tao,Xu, Xiaowan.

[16]Analysis of codon usage patterns in Taenia pisiformis through annotated transcriptome data. Chen, Lin,Yang, Deying,Nong, Xiang,Xie, Yue,Fu, Yan,Wu, Xuhang,Huang, Xing,Gu, Xiaobin,Wang, Shuxian,Yang, Guangyou,Liu, Tianfei,Peng, Xuerong.

[17]Transcriptomic analysis reveals differentially expressed genes and a unique apoptosis pathway in channel catfish ovary cells after infection with the channel catfish virus. Dawar, Farman Ullah,Hu, Xianqin,Dong, Xingxing,Xiong, Yang,Mei, Jie,Lin, Li,Dawar, Farman Ullah,Zhao, Lijuan,Zhou, Meng,Liang, Rishen,Babu, V. Sarath,Lin, Li,Hu, Xianqin,Li, Jun,Li, Jun,Lin, Li,Lin, Li.

[18]De Novo Characterization of Leaf Transcriptome Using 454 Sequencing and Development of EST-SSR Markers in Tea (Camellia sinensis). Wu, Hualing,Chen, Dong,Li, Jiaxian,Qiao, Xiaoyan,Huang, Hualin,He, Yumei,Wu, Hualing,Chen, Dong,Li, Jiaxian,Qiao, Xiaoyan,Huang, Hualin,He, Yumei,Yu, Bo.

作者其他论文 更多>>