您好,欢迎访问江苏省农业科学院 机构知识库!

Proanthocyanidin monomers and cyanidin 3-o-glucoside accumulation in blood-flesh peach (Prunus persica (l.) Batsch) fruit

文献类型: 外文期刊

作者: Yan, Juan 1 ; Cai, Zhi-xiang 1 ; Shen, Zhi-jun 1 ; Ma, Rui-juan 1 ; Yu, Ming-liang 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Hort, Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing 210014, Jiangsu, Peoples R China

关键词: blood-flesh peach (Prunus persica (L.) Batsch);catechin;epicatechin;cyanidin 3-O-glucoside;gene expression

期刊名称:ARCHIVES OF BIOLOGICAL SCIENCES ( 影响因子:0.956; 五年影响因子:0.943 )

ISSN: 0354-4664

年卷期: 2017 年 69 卷 4 期

页码:

收录情况: SCI

摘要: To better understand the characteristics and mechanisms of proanthocyanidin monomers and anthocyanin synthesis in blood-flesh peach (Prunus persica (L.) Batsch), the accumulation of catechin, epicatechin and cyanidin 3-O-glucoside was determined, and the expression patterns of structural genes associated with biosynthesis of those compounds were investigated in the blood-flesh peach fruit of cultivar "Dahongpao" during fruit development. Our results show that catechin concentration remained low and comparatively stable throughout fruit development. The concentration of epicatechin remained low at the early stages of fruit development and rapidly accumulated during ripening. Cyanidin 3-O-glucoside was not detected in the early stages. Epicatechin started to rapidly accumulate during the ripening period, reaching a maximum at the mature stage. The expressions of the early and common genes, phenylalanine ammonia-lyase and chalcone isomerase, were less associated with proanthocyanidin monomers and cyanidin 3-O-glucoside accumulation. The expression of other flavonoid 'early' biosynthetic genes, including chalcone synthase (CHS), flavanone 3-hydroxylase, dihydroflavonol 4-reductase (DFR) and leucoanthocyanidin dioxygenase (LDOX), were partly associated with proanthocyanidin monomers and cyanidin 3-O-glucoside levels, with expression quantities peaking synchronously at the mature stage. Leucoanthocyanidin reductase and anthocyanidin reductase, which were the key genes for proanthocyanidin monomer synthesis, correlated during fruit development with catechin and epicatechin accumulation respectively; UDP-glucose: flavonoid 3-O-glucosyltransferase (UGFT), the key gene for anthocyanin synthesis, was correlated with cyanidin 3-O-glucoside levels. The synchronous accumulation of epicatechin and cyanidin 3-O-glucoside in blood-flesh peach could not be explained by the current theory of competitive distribution mechanism of common substrate.

  • 相关文献

[1]Accumulation of proanthocyanidin monomers in two genotypes of blood-flesh peach. Yan, Juan,Cai, Zhixiang,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang.

[2]Selection of appropriate reference genes in eggplant for quantitative gene expression studies under different experimental conditions. Zhou, Xiaohui,Liu, Jun,Zhuang, Yong.

[3]Comprehensive molecular evolution and gene expression analyses of the ABC1 atypical kinase family in rice and Arabidopsis. Gao, Qingsong,Luo, Yuming,Yang, Liming,Zang, Hui,Gao, Yun,Yang, Zefeng,Zhou, Yong,Yuan, Yuan,Wang, Yifan,Xu, Xing,Xu, Chenwu,Liang, Guohua,Wang, Jun.

[4]Identification and characterization of presence/absence variation in maize genotype Mo17. Jiang, Lu,Lv, Yuanda,Li, Tan,Zhao, Han,Zhang, Tifu,Jiang, Lu.

[5]Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper. Xu, Qiufang,Ni, Haiping,Zhang, Jinfeng,Lan, Ying,Ren, Chunmei,Zhou, Yijun,Xu, Qiufang,Lan, Ying,Ren, Chunmei,Zhou, Yijun,Ni, Haiping.

[6]Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress. Zhang, Cheng,Jia, Haifeng,Fang, Jinggui,Wang, Chen,Wu, Weimin,Wang, Xicheng.

[7]RNA-Seq Analysis of Differentially Expressed Genes in Rice under Photooxidation. Ma, J.,Zhang, B. -B.,Wang, F.,Sun, M. -M.,Shen, W. -J.,Gao, Z.,Chen, G. -X.,Lv, C..

[8]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[9]CLONING AND EXPRESSION ANALYSIS OF TWO UDP-GLUCOSYLTRANSFERASES GENES IN WHEAT. Lin, F. Y.,Shi, J. R.,Lu, Q. X.,Xu, J. H.,Yang, H. Y..

[10]Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.). Yin, Yan-Xu,Zhang, Huai-Xia,Xiao, Huai-Juan,Jin, Jing-Hao,Ji, Jiao-Jiao,Jing, Hua,Chen, Ru-Gang,Arisha, Mohamed Hamed,Gong, Zhen-Hui,Wang, Shu-Bin,Arisha, Mohamed Hamed.

[11]Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens. Lei, M. M.,Chen, Z.,Ying, S. J.,Shi, Z. D.,Wu, S. Q.,Li, X. W.,Shao, X. B..

[12]Transcriptomic responses to different doses of cycloxaprid involved in detoxification and stress response in the whitebacked planthopper, Sogatella furcifera. Yang, Yuanxue,Zhang, Yixi,Yang, Baojun,Liu, Zewen,Fang, Jichao.

[13]5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Xie, L.,Cheng, X. H.,Gao, J. J.,Zhang, Z. P.,Wang, L. J.,Wang, Z. H..

[14]Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Zhang, Chunhua,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Korir, Nicholas Kibet.

[15]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[16]De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma, Peiyong,Bian, Xiaofeng,Jia, Zhaodong,Guo, Xiaoding,Xie, Yizhi.

[17]Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Bin, Wang Shu,Wei, Liu Ke,Ping, Diao Wei,Li, Zhi,Wei, Ge,Bing, Liu Jin,Gui, Pan Bao,Jian, Wan Hong,Feng, Chen Jin,Wei, Liu Ke.

[18]Long form leptin receptor and SNP effect on reproductive traits during embryo attachment in Suzhong sows. Fu, Yanfeng,Li, Bixia,Fang, Xiaomin,Ren, Shouwen,Fu, Yanfeng,Li, Lan,Li, Lan.

[19]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

[20]Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Huan, Chen,Jiang, Li,An, Xiujuan,Xu, Yin,Yu, Zhifang,Yu, Mingliang,Ma, Ruijuan.

作者其他论文 更多>>