您好,欢迎访问江苏省农业科学院 机构知识库!

Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China

文献类型: 外文期刊

作者: Qiu, Jianbo 1 ; Shi, Jianrong 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Key Lab Control Technol & Stand Agroprod Safety &, Key Lab Food Qual & Safety Jiangsu Prov,Inst Food, State Key Lab Breeding Base,Minist Agr,Key Lab Ag, Nanjing 210014, Jiangsu, Peoples R China

关键词: Fusarium graminearum;trichothecene chemotype;genetics relationships;mycotoxin production;carbendazim resistance

期刊名称:TOXINS ( 影响因子:4.546; 五年影响因子:4.8 )

ISSN: 2072-6651

年卷期: 2014 年 6 卷 8 期

页码:

收录情况: SCI

摘要: Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species-and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1 alpha and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture.

  • 相关文献

[1]Involvement of FgMad2 and FgBub1 in regulating fungal development and carbendazim resistance in Fusarium graminearum. Zhang, L. G.,Zhang, Y.,Li, B. C.,Jia, X. J.,Chen, C. J.,Zhou, M. G.,Zhang, L. G..

[2]Molecular characterization of the Fusarium graminearum species complex in Eastern China. Qiu, Jianbo,Xu, Jianhong,Shi, Jianrong,Qiu, Jianbo,Xu, Jianhong,Shi, Jianrong,Qiu, Jianbo,Xu, Jianhong,Shi, Jianrong.

[3]Change of Defensive-related Enzyme in Wheat Crown Rot Seedlings Infected by Fusarium graminearum. Zhang, P.,Zhou, M. P.,Zhang, X.,Huo, Y.,Ma, H. X.. 2013

[4]Simultaneous determination of deoxynivalenol, and 15-and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. Yang, D.,Geng, Z. M.,Yao, J. B.,Zhang, X.,Zhang, P. P.,Ma, H. X.. 2013

[5]Enzyme-Linked Immunosorbent-Assay for Deoxynivalenol (DON). Ji, Fang,Li, Hua,Xu, Jianhong,Shi, Jianrong. 2011

[6]Fusarium graminearum growth inhibition due to glucose starvation caused by osthol. Shi, Zhiqi,Shen, Shouguo,Zhou, Wei,Wang, Fei,Fan, Yongjian. 2008

[7]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[8]Involvement of threonine deaminase FgIlv1 in isoleucine biosynthesis and full virulence in Fusarium graminearum. Liu, Xin,Xu, Jianhong,Wang, Jian,Ji, Fang,Yin, Xianchao,Shi, Jianrong.

[9]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[10]Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. Zhang, Leigang,Li, Baicun,Zhang, Yu,Jia, Xiaojing,Zhou, Mingguo,Zhang, Leigang,Li, Baicun,Zhang, Yu,Jia, Xiaojing,Zhou, Mingguo,Zhang, Leigang.

[11]The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis. Gao, Tao,Chen, Jian,Shi, Zhiqi,Gao, Tao,Chen, Jian,Shi, Zhiqi,Gao, Tao,Chen, Jian,Shi, Zhiqi,Zhou, Hao,Zhou, Wei,Hu, Liangbin.

作者其他论文 更多>>