您好,欢迎访问江苏省农业科学院 机构知识库!

Cloning of three 2,3-dihydroxybiphenyl-1,2-dioxygenase genes from Achromobacter sp BP3 and the analysis of their roles in the biodegradation of biphenyl

文献类型: 外文期刊

作者: Cao, Li 1 ; Gao, Yuan 1 ; Wu, Guang 1 ; Li, Mingxing 1 ; Xu, Jianhong 2 ; He, Jian 1 ; Li, Shunpeng 1 ; Hong, Qing 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Life Sci, Minist Agr, Key Lab Agr Environm Microbiol, Nanjing 210095, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Key Lab Agroprod Safety Risk Evaluat Nanjing, Minist Agr, Jiangsu Ctr GMO Evaluat & Detect, Nanjing 210014, Jiangsu, Peoples R China

关键词: Biphenyl;Biodegradation;Achromobacter sp BP3;2,3-Dihydroxybiphenyl-1,2-dioxygenases

期刊名称:JOURNAL OF HAZARDOUS MATERIALS ( 影响因子:10.588; 五年影响因子:10.129 )

ISSN: 0304-3894

年卷期: 2013 年 261 卷

页码:

收录情况: SCI

摘要: Three 2,3-dihydroxybiphenyl 1,2-dioxygenase genes (designated as bphC1, bphC2 and bphC3) were cloned from a biphenyl-degrading strain Achromobacter sp. BP3. The amino acid sequence of BphC1 and BphC3 had high similarity (>99%) with the reported BphCs, while BphC2 showed relatively low identity (29.51-50.17%) with the reported BphCs, which indicated that bphC2 might be a novel gene. The bphC1, bphC2 and bphC3 genes were expressed in Escherichia coli BL21 and the products were homogenously purified. BphC1, BphC2 and BphC3 displayed maximum activity at 30 degrees C, 30 degrees C and 40 degrees C, respectively. Their optimal catalysis pH was 8.0, 9.0 and 9.0, respectively. BphC1 and BphC2 had higher substrate affinity and catalytic efficiency on 2,3-dihydroxybiphenyl, while BphC3 exhibited these features on aromatic monocyclic substrates. The bphC1 gene was only induced by biphenyl and bphC3 was induced by both biphenyl and toluene, while bphC2 was constitutively expressed in strain BP3. These results suggested that BphC1 and BphC3 played a role in the upstream and downstream metabolic pathways of biphenyl, respectively. However, BphC2 might play a supplementary role and contribute more to the upstream than to the downstream pathway. (C) 2013 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Ying, Guang-Guo,Ying, Guang-Guo,Yu, Xiang-Yang,Kookana, Rai S.,Yu, Xiang-Yang.

[2]Effects of Bacterial-Feeding Nematodes and Glucose on Phenanthrene Removal by Pseudomonas putida. Jing Yongping,Li Yan,Zhang Yingpeng,Liu Ping,Sun Ming,Jing Yongping,Li Yan,Zhang Yingpeng,Jing Yongping,Liu Zhaohui,Luo, Jiafa. 2017

[3]Straw Degradation Behaviors under Different Conditions of Relative Air Humidity and Ultraviolet-A Irradiation. Li, Yunlong,Huang, Hongying,Wu, Guofeng,Chang, Zhizhou,Li, Yunlong. 2016

[4]Gordonia phthalatica sp nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. Jin, Decai,Kong, Xiao,Zhuang, Xuliang,Deng, Ye,Bai, Zhihui,Jin, Decai,Kong, Xiao,Zhuang, Xuliang,Deng, Ye,Bai, Zhihui,Jia, Minghong,Yu, Xiangyang,Wang, Xinxin. 2017

[5]Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp Strain QH-12. Jin, Decai,Kong, Xiao,Deng, Ye,Liu, Huijun,Jia, Minghong,Wang, Xinxin,Yu, Xiangyang. 2016

[6]Biodegradation of naproxen by freshwater algae Cymbella sp and Scenedesmus quadricauda and the comparative toxicity. Yang, Bo,Yang, Mengting,Li, Juying,Ding, Tengda,Lin, Kunde,Li, Wenying,Gan, Jay,Yang, Bo,Li, Juying.

[7]Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of Zearalenone by Bacillus spp.. Xu, Jianhong,Wang, Hongjie,Zhu, Ziwei,Ji, Fang,Yin, Xianchao,Shi, Jianrong,Zhu, Ziwei,Hong, Qing.

[8]Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Wang, Gang,Yu, Mingzheng,Dong, Fei,Shi, Jianrong,Xu, Jianhong.

作者其他论文 更多>>