您好,欢迎访问中国热带农业科学院 机构知识库!

Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets

文献类型: 外文期刊

作者: Gebelin, Virginie 1 ; Argout, Xavier 1 ; Engchuan, Worrawat 1 ; Pitollat, Bertrand 1 ; Duan, Cuifang 1 ; Montoro, P 1 ;

作者机构: 1.UMR AGAP, CIRAD, F-34398 Montpellier, France

2.King Mongkuts Univ Technol, Thonburi, Thailand

3.RRI, CATAS, Danzhou 571737, Hainan, Peoples R China

关键词: Gene expression;miRNA;MIR gene;Next-generation sequencing;Rubber tree;Transcription;Transcriptome;Abiotic stress;miRNA editing

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2012 年 12 卷

页码:

收录情况: SCI

摘要: Background: Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. Results: Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. Conclusions: Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea.

  • 相关文献

[1]The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Gebelin, Virginie,Leclercq, Julie,Argout, Xavier,Sarah, Gautier,Montoro, Pascal,Kuswanhadi,Chaidamsari, Tetty,Hu, Songnian,Yang, Meng,Tang, Chaorong. 2013

[2]Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis. Gebelin, Virginie,Leclercq, Julie,Montoro, Pascal,Hu, Songnian,Tang, Chaorong. 2013

[3]Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Wei, Fang,Luo, Shigiao,Zheng, Qiankun,Qiu, Jian,Yang, Wenfeng,Wu, Ming,Xiao, Xianzhou.

[4]Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Li, Dejun,Liu, Hui,Zhao, Manman,Deng, Zhi,Li, Yu,Zeng, Rizhong,Tian, Weimin,Hao, Lili,Zhao, Manman. 2015

[5]De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Qin, Bi,Liu, Xianghong,Men, Zhonghua. 2012

[6]Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). Liu, Jin-Ping,Tian, Xiao-Yan,Xia, Zhi-Qiang,Li, Yi-Jian. 2015

[7]Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis. Zhu, Jinheng,Qi, Jiyan,Fang, Yongjun,Xiao, Xiaohu,Lan, Jixian,Tang, Chaorong,Zhu, Jinheng,Lan, Jixian,Tang, Chaorong,Li, Jiuhui. 2018

[8]橡胶树炭疽病菌Cap2移基因的克隆和序列分析. 林春花,李超萍,李博勋,周维,黄贵修. 2012

[9]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[10]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[11]Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Z.,Li, J.,Jia, C.,Xu, B.,Jin, Z.,Jin, Z..

[12]Identification and analysis of the metacaspase gene family in tomato. Liu, Hui,Liu, Jian,Wei, Yongxuan.

[13]Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing. 2014

[14]Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Li, Meiying,Xu, Biyu,Yang, Xiaoliang,Xia, Qiyu,He, Pingping,Xiao, Susheng,Guo, Anping,Hu, Wei,Jin, Zhiqiang,Ren, Licheng,Jin, Zhiqiang. 2016

[15]The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Hu, Wei,Yan, Yan,Liu, Juhua,Miao, Hongxia,Tie, Weiwei,Ding, Zehong,Ding, XuPo,Wu, Chunlai,Liu, Yang,Xu, Biyu,Jin, Zhiqiang,Wang, Jiashui,Jin, Zhiqiang,Shi, Haitao. 2017

[16]Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Zhuo,Huang, Suzhen,Jia, Caihong,Liu, Juhua,Zhang, Jianbin,Xu, Biyu,Jin, Zhiqiang. 2013

[17]Expressional characterization of two class I trehalose-6-phosphate synthase genes in Hevea brasiliensis (para rubber tree) suggests a role in rubber production. Zhou, Binhui,Fan, Yujie,Wang, Ying,Zhou, Binhui,Fang, Yongjun,Fan, Yujie,Qi, Jiyan,Tang, Chaorong.

[18]Molecular and functional characterization of the JcMYB1, encoding a putative R2R3-MYB transcription factor in Jatropha curcas. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing.

[19]Transcription Profiling Analysis of Mango-Fusarium Mangiferae Interaction. Liu, Feng,Wu, Jing-bo,Zhan, Ru-lin,Ou, Xiong-chang. 2016

[20]Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis. Cong, Hanqing,Li, Zhiying,Xu, Li,Cong, Hanqing,Li, Zhiying,Xu, Li,Cong, Hanqing.

作者其他论文 更多>>