您好,欢迎访问黑龙江省农业科学院 机构知识库!

Pathogenicity of Pythium species causing seed rot and damping-off in soybean under controlled conditions

文献类型: 外文期刊

作者: Wei, Lai 2 ; Xue, Allen G. 1 ; Cober, Elroy R. 1 ; Babcock, Carolyn 1 ; Zhang, Jinxiu 1 ; Zhang, Shuzhen 2 ; Li, Wenbi 1 ;

作者机构: 1.AAFC, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C6, Canada

2.NE Agr Univ, Key Lab Soybean Biol, Chinese Minist Educ, Harbin 150030, Peoples R China

3.Heilongjiang Acad Agr Sci, Soybean Res Inst, Harbin 150086, Peoples R China

关键词: damping-off;Glycine max;pathogenicity;Pythium spp.;seed rot;soybean

期刊名称:PHYTOPROTECTION ( 影响因子:0.333; 五年影响因子:0.429 )

ISSN: 0031-9511

年卷期: 2010 年 91 卷

页码:

收录情况: SCI

摘要: Pythium species cause seed rot (SR) and damping-off (DO) in soybean worldwide. In a previous study, a number of Pythium species were isolated from infected soybean plants across Ontario and Quebec, but their comparative pathogenicities to soybean were not examined. In the present research, 24 isolates from eight Pythium spp. were evaluated for their pathogenicity in causing soybean SR and DO in a greenhouse environment. The effect of temperature on the ability of these isolates to cause SR was also studied. There were significant differences among the eight Pythium spp. for both SR and DO. When tested at 25 degrees C, Pythium ultimum was the most pathogenic species, causing 97.0% SR and 46.4% DO, on average, in the two soybean cultivars used. Pythium aphanidermatum was the second most pathogenic species, resulting in 88.5% SR and 41.8% DO. The two species resulted in significantly greater SR and DO than the other six species tested and were considered highly pathogenic. Of the two cultivars used in these trials, 'Beechwood' was significantly more susceptible than 'Nattawa' to both SR and DO. Temperature had a significant influence on SR caused by Pythium spp. At all four temperatures tested (4 degrees C, 12 degrees C, 20 degrees C and 28 degrees C), P. ultimum was highly pathogenic, while P. arrenomanes, P. coloratum and P. dissotocum were the least pathogenic. The interactions between temperature and Pythium spp. were more pronounced for P. aphanidermatum, which showed an increased percentage of SR with an increase in temperature, and for P. irregulare, P. macrosporum and P. sylvaticum, which showed a decreased percentage of SR with an increase in temperature.

  • 相关文献

[1]Identification of Pythium spp. from the rhizosphere of soybeans in Ontario, Canada. Marchand, Genevieve,Chen, Yuanhong,Berhane, Nahom A.,Levesque, C. Andre,Xue, Allen G.,Wei, Lai. 2014

[2]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[3]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang. 2005

[4]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang,中国科学院文献情报中心; 中国生物技术发展中心; 中国生物工程学会;. 2005

[5]Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Li, Wenbin,Ma, Yansong,Liu, Zhangxiong,Guo, Yong,Qiu, Lijuan,Ma, Yansong,Luan, Xiaoyan,Reif, Jochen C.,Jiang, Yong,Wen, Zixiang,Wang, Dechun,Han, Tianfu,Wu, Cunxiang,Sun, Shi,Wei, Shuhong,Wang, Shuming,Yang, Chunming,Wang, Huicai,Yang, Chunming,Zhang, Mengchen,Lu, Weiguo,Xu, Ran,Zhou, Rong,Zhou, Xinan,Wang, Ruizhen,Sun, Zudong,Chen, Huaizhu,Zhang, Wanhai,Sun, Bincheng,Wu, Jian,Han, Dezhi,Yan, Hongrui,Hu, Guohua,Liu, Chunyan,Fu, Yashu,Chen, Weiyuan,Guo, Tai,Zhang, Lei,Yuan, Baojun.

[6]Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River. Li, Ying-hui,Zhang, Chen,Li, Wei,Chang, Ru-zhen,Qiu, Li-juan,Smulders, Marinus J. M.,Ma, Yan-song,Xu, Qu.

[7]Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Dong, Lidong,Cheng, Yingxin,Cheng, Qun,Li, Wenbin,Fan, Sujie,Jiang, Liangyu,Xu, Pengfei,Zhang, Shuzhen,Wu, Junjiang,Wu, Junjiang,Kong, Fanjiang,Xu, Zhaolong,Zhang, Dayong.

[8]Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Li, Ying-hui,Hong, Hui-long,Li, Hui-hui,Liu, Zhang-xiong,Tian, Yun,Li, Yan-fei,Qiu, Li-juan,Reif, Jochen C.,Ma, Yan-song,Li, Jun,Li, Wen-bin. 2018

[9]Analyses of the community compositions of root rot pathogenic fungi in the soybean rhizosphere soil. Cui, Jiaqi,Han, Jie,Cai, Baiyan,Wang, Yu. 2016

[10]GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean. Fan, Sujie,Dong, Lidong,Han, Dan,Jiang, Liangyu,Cheng, Qun,Li, Rongpeng,Meng, Fanshan,Zhang, Shuzhen,Xu, Pengfei,Fan, Sujie,Jiang, Liangyu,Zhang, Feng,Wu, Junjiang,Lu, Wencheng. 2017

[11]A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. Zhao, Yuanling,Chang, Xin,Qi, Dongyue,Dong, Lidong,Fan, Sujie,Jiang, Liangyu,Cheng, Qun,Chen, Xi,Han, Dan,Xu, Pengfei,Zhang, Shuzhen,Zhao, Yuanling,Wang, Guangjin. 2017

[12]A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae. Li, Ninghui,Zhao, Ming,Liu, Tengfei,Dong, Lidong,Cheng, Qun,Wang, Le,Chen, Xi,Zhang, Chuanzhong,Xu, Pengfei,Zhang, Shuzhen,Li, Ninghui,Wu, Junjiang,Lu, Wencheng. 2017

[13]Response of soybean genotypes to Meloidogyne incognita and M. hapla in Heilongjiang Province in China. Li, Chunjie,Hua, Cui,Hu, Yanfeng,You, Jia,Mao, Yanzhi,Wang, Congli,Li, Jianying,Tian, Zhongyan.

[14]C-terminal truncation of the transmembrane protein of an attenuated lentiviral vaccine alters its in vitro but not in vivo replication and weakens its potential pathogenicity. Jiang, Cheng-Gang,Gao, Xu,Ma, Jian,Lin, Yue-Zhi,Wang, Xue-Feng,Zhao, Li-Ping,Zhou, Jian-Hua,Jiang, Cheng-Gang,Liu, Di,Hua, Yue-Ping,Gao, Xu. 2011

[15]Anastomosis Group and Pathogenicity of Rhizoctonia solani Associated with Stem Canker and Black Scurf of Potato in Heilongjiang Province of China. Yang, Shuai,Min, Fanxiang,Wang, Wenzhong,Wei, Qi,Guo, Mei,Gao, Yunfei,Dong, Xuezhi,Lu, Dianqiu,Yang, Shuai,Lu, Dianqiu.

[16]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[17]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[18]Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Shi Xiaodi,Li Jingyan,Guo Shuntang,Wang Shuming,Zhang Lei,Qiu Lijuan,Han Tianfu,Wang Qianyu,Chang Sam Kow-Ching.

[19]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[20]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

作者其他论文 更多>>