科研产出
基于热点效应的不同株型小麦LAI反演
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:针对小麦株型对LAI反演精度的制约,利用地面实测的多角度数据,提出采用热点指数反演高精度的不同株型小麦LAI。通过分析京411紧凑型和中优9507披散型两种株型小麦在红光(670nm)和近红外波段(800和860nm)的二向反射光谱特征,借鉴热暗点指数HDS和归一化热暗点信息指数NDHD,构建了改进的归一化热暗点指数MNDHD和热暗点比值指数HDRI两个新热点指数。将HDS,NDHD,MNDHD和HDRI与NDVI,SR和EVI相乘得到的热点组合指数用于不同株型小麦LAI的反演。分析得出对紧凑型小麦京411,由860nm近红外波段的NDVI与MNDHD和HDRI的组合指数反演的LAI精度分别为0.9431和0.909 2;对披散型小麦中优9507,由800nm近红外波段的SR与HDRI和MNDHD的组合指数获得的LAI反演精度分别为0.964 8和0.895 6。表明基于冠层的热点效应反演不同株型小麦LAI的方法可行,多角度遥感数据在作物结构参数提取方面比常规观测数据更具优势。


基于多角度成像数据的新型植被指数构建与叶绿素含量估算
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:叶绿素含量的快速估算对于及时了解作物的长势、病虫害监测以及产量的评估都具有重要意义。利用自主研发的多角度成像观测系统获取了不同生育期玉米的高光谱影像,精确地提取出主平面内各个观测角度下玉米冠层的反射率。通过对ACRM模型模拟值和实测值的分析,计算出玉米冠层红波段下的热点-暗点指数(HDS),并利用该指数对TCARI进行改进,提出一个基于多角度观测的新型植被指数HDTCARI,最后使用多角度高光谱成像数据对其进行了地面验证。结果表明,HD-TCARI能够减小LAI对叶绿素估算的影响,当叶绿素浓度大于30μg·cm-2,HD-TCARI与LAI的相关性R2仅为26.88%~28.72%;当叶绿素浓度较高时,HD-TCARI具有抗"饱和"的特性在LAI在1~6之间变化时,HD-TCARI与叶绿素浓度的线性关系R2较TCARI提高了约9%左右。利用多角度高光谱成像数据对HD-TCARI进行地面验证,其与叶绿素浓度的线性关系(R2=66.74%)明显优于TCARI所建立的估算模型(R2=39.92%),证明了HD-TCARI指数具有更好地估算叶绿素浓度的潜力。
关键词: 多角度成像 热点-暗点 植被指数 ACRM模型 叶绿素含量


液态样本近红外光谱测量中的光程变化误差消减方法研究
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:以蔗糖溶液为研究对象,利用近红外光谱分别测量4,5和6mm光程下不同浓度蔗糖溶液的透反射光谱,研究采用矢量归一化、基线偏移校正、多元散射校正、标准正态变量变换、一阶导数5种预处理方法消除光程差异的影响,并结合PLS方法建立校正集模型。与原始光谱的PLS模型相比,五种预处理方法均对模型的预测精度有不同程度的提高,其中,多元散射校正结合PLS方法建立的模型最优,使原始光谱的主成分数PC由6下降为3,决定系数R2由0.891 278提高到0.987 535,交互验证决定系数R2CV由0.888 374提高到0.983 343,校正标准偏差RMSEC由1.704%下降到0.89%,交互验证的校正标准偏差RMSECV由1.827%下降到1.05%,预测集样本的相关系数由0.950 89上升到0.976 22,预测标准偏差由0.014 36下降为0.01。结果表明,五种预处理方法中,多元散射校正法能够消除光程差异的干扰,提高模型的预测精度,改善稳定性。


LED组合光谱对水培生菜矿物质吸收的影响
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:在植物工厂全密闭环境中水培种植大速生生菜,以光谱比例可调节的LED灯板为植物生长光源,应用电感耦合等离子体原子发射光谱技术(ICP-AES),研究了红蓝LED组合光谱下生菜对K,P,Ca,Mg,Na,Fe,Mn,Zn,Cu,B,Mo等11种营养元素的吸收特性。结果表明:(1)与叶绿素生理吸收波峰(峰值450和660nm)对应的单一或组合光谱均可增强水培生菜根对Na,Fe,Mn,Cu,Mo元素的吸收能力,且单一红光光谱的促进作用最为显著,四种元素含量分别为荧光灯全光谱下的7.8,4.2,5.3,11.0倍;(2)根对K和B元素的吸收量在荧光灯全光谱下达到最大分别为10.309mg·g-1和32.6μg·g-1,而在红、蓝单一或组合光谱下吸收能力降低;(3)单一蓝色光谱下根对Ca和Mg元素的吸收受到抑制,分别比荧光灯对照降低35%,33%;(4)生菜在30%蓝光+70%红光的光谱条件下生物量最高,而在20%蓝光+80%红光条件下对Ca,Mg,Na,Fe,Mn,Zn,B七种元素的累积量达到最大值。试验结果为水培生菜光源光谱选择及营养液配方调节提供了理论依据。
关键词: LED 光谱成分 ICP-AES技术 生菜 矿质元素


基于线性渐变分光微型近红外仪的西湖龙井真伪模型不适应性析因及修正研究
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:采用基于线性渐变滤光片分光原理的微型近红外光谱仪对2012年和2013年的西湖龙井和普通扁形茶建立真伪识别模型。分别对不同年份、不同保存期样品的近红外光谱数据进行PCA分解,并根据PCA得分分布的数学特征选取代表性样品,建立PLS-DA模型,从数学原理的角度对模型不适应性的原因加以分析,并对其进行修正,结合外部盲样的验证,有效地增强了模型适应性。研究结果表明,针对西湖龙井和普通扁形茶,采用不同年份样品近红外光谱数据共同建模可有效提高模型对不同年份样品的识别正确率;采用不同保存期样品近红外光谱数据建模结果表明,普通扁形茶在冷冻保存3个月后,理化性质发生了较大的变异,而西湖龙井的理化性质相对较为稳定。从光谱数据主成分特征的数学原理角度对不同年份以及不同保存期模型的适应性进行了研究,建立并验证了适合西湖龙井真伪识别的模型,有效提高了模型的预测准确度。不仅可为近红外光谱应用于农产品质量安全与品质分级方面提供一定的参考,而且对提高农产品近红外分级模型的预测准确度亦具有参考价值。
关键词: 线性渐变滤光片 近红外光谱 地理标志农产品 西湖龙井


特征变量优选在苹果可溶性固形物近红外便携式检测中的应用
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:为实现苹果可溶性固形物(SSC)的便携式快速检测,利用环形光纤探头和微型光谱仪搭建便携式苹果可溶性固形物光谱采集系统,结合无信息变量消除(UVE)、遗传算法(GA)、竞争性自适应加权(CARS)算法筛选基于偏最小二乘(PLS)的苹果可溶性固形物的近红外光谱特征波长。另外,采用反向区间最小二乘支持向量机(BiLS-SVM)和GA算法优选基于LS-SVM的特征波长变量,分别建立所选特征波长和全波段的PLS模型和LS-SVM模型。试验结果表明,经过GA-CARS算法从全波段1 512个波长中筛选出的50个特征波长建立的PLS模型效果最好,其预测相关系数和预测均方根误差分别为0.962和0.403°Brix。利用该检测装置结合GA-CARS筛选的特征波长,可有效简化苹果可溶性固形物近红外便携式检测模型并提高模型的预测精度,为进一步构建便携式苹果可溶性固形物检测设备奠定了基础。


LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:为提高梨可溶性固形物含量(soluble solids content,SSC)的近红外光谱模型的精度和稳定性,以160个梨样品为实验对象,分别对原始光谱、多元散射校正(MSC)和标准正态变量变换(SNV)处理后的光谱,经无信息变量消除算法(UVE)挑选后,再结合遗传算法(GA)和连续投影算法(SPA),筛选梨可溶性固形物的近红外光谱特征波长。将筛选后的波长作为输入变量建立梨可溶性固形物的最小二乘支持向量机(LS-SVM)模型。结果表明经过SNV-UVE-GA-SPA从全波段3112个波长中筛选出的30个特征波长建立的梨可溶性固形物LS-SVM模型效果最好,该模型的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.956和0.271。该模型简单可靠,预测效果好,能满足梨的可溶性固形物含量的快速检测,为在线检测和便携式设备开发提供了理论基础。
关键词: 近红外光谱 特征波长 最小二乘支持向量机 可溶性固形物 梨


傅里叶变换红外光谱在葡萄酒品质劣变检测中的应用
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:葡萄酒如果贮存方法不当极易发生劣变,失去原有的风味和质感,影响品质,因此对葡萄酒劣变进行检测,具有重要意义。在红葡萄酒劣变过程中,主要发生了酸败现象,产生了过量的有机酸类物质,致使葡萄酒原有性状发生变化。利用傅里叶变换红外光谱技术研究红葡萄酒特征光谱及其品质劣变的判别方法。对劣变过程的理化特性进行了分析,并对葡萄酒的FTIR光谱的主要吸收峰进行了解析。在劣变判别过程中,创新性的采用了比较多个吸收峰之间的吸光度比值之间大小关系的方法实现对劣变的判定,但此方法具有一定的相对性。通过对变质红葡萄酒与未变质红葡萄酒的FTIR光谱数据进行对比分析,发现在3 020~2 790,1 760~1 620以及1 550~800cm-1三个波段内,在光谱特征上具有一定的差异,为了能够将这些光谱差异与葡萄酒的劣变情况建立联系并能够实现判别分析,引入了化学计量学方法。采用主成分分析(PCA)结合软独立建模聚类分析法(SIMCA)分别对以上三个特征波段内光谱数据进行了分类,最后利用偏最小二乘判别分析(PLS-DA)对验证集数据在这三个波段进行了判别,结果表明FTIR结合化学计量学方法能够成功区分开变质和未变质的红葡萄酒样本,且具有很好的识别率,其中利用1 550~800cm-1波段来建模分析效果最好,SIMCA和PLS-DA识别率分别为94%和100%。


近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:高光谱数据量大、维数高且原始光谱噪声明显、散射严重等特征导致光谱建模时关键波长变量提取困难。基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。鸭梨作为研究对象。采用决定系数r2、预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。
关键词: 近红外高光谱 可溶性固形物 鸭梨 变量选择 竞争性自适应重加权算法


基于高光谱成像技术和MNF检测苹果的轻微损伤
《光谱学与光谱分析 》 2014 EI SCI 北大核心 CSCD
摘要:苹果损伤是一种发生在水果采摘和产后处理阶段的不可避免的主要缺陷。为了快速有效地识别苹果的轻微损伤,以具有代表性的双色红富士苹果为研究对象,提出了一种以高光谱成像和最低噪声分离(MNF)变换的苹果轻微损伤识别检测方法。首先,使用高光谱成像系统获取苹果的可见-近红外波段(400~1 000nm)的图像,对比发现全波段的最低噪声分离变换比主成分分析(PCA)变换可获得更好的识别效果;其次,利用I-RELIEF算法对正常表皮和损伤区域的光谱进行分析得出权值系数图,依据该系数曲线挑选出了5个特征波段(560,660,720,820和960nm);最后,特征波段和最低噪声分离变换开发了损伤苹果的识别检测算法。利用该算法对80个正常苹果和含有不同时间阶段轻微损伤的苹果进行试验,损伤识别总体正确率为97.1%,试验结果表明,利用该方法和选取的特征波段可以快速有效地识别苹果的早期轻微损伤,为利用多光谱成像技术和最低噪声分离变换在线检测苹果轻微损伤奠定了基础。

