您好,欢迎访问北京市农林科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
收录级别:SCI(精确检索)
209条记录
新植被水分指数的冬小麦冠层水分遥感估算

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:水分含量是表征作物水分胁迫生理状况的重要指标,及时有效地监测作物水分含量对于评估作物水分盈亏平衡,指导农业生产灌溉具有重要意义。针对不同形式的归一化差值水分指数(NDWI)存在的饱和性问题,拟引入增强型植被指数EVI对其加以适当改进,通过构建新的植被水分指数NDWI#(即NDWI*EVI)来估算作物水分含量。首先,利用PROSAIL辐射传输模型分析了由不同水分敏感波段(1 240,1 450,1 950和2 500nm)构建的各种典型NDWIs与相应新植被水分指数NDWI#对植被冠层水分及LAI的饱和响应特征;然后,利用田间实验光谱和水分数据,开展作物水分含量的建模和验证分析。结果表明:将EVI引入后,形成的新水分指数NDWI#能够有效提高冬小麦水分含量估算精度,特别是针对NDWI1450,NDWI1940,NDWI2500这三个指数,改进后的新指数显著提高了对LAI响应的饱和点,冬小麦作物水分估算精度也得到较为的明显改善。研究表明,将含有可见光波段信息的EVI引入到NDWI中,构建的新指数NDWI#因融合可见光、近红外和短波红外更多波段的光谱信息,对估算冬小麦冠层含水量可能具有更好的优势。

关键词: VWC EWT 冠层光谱 NDWI 冬小麦

 全文链接 请求原文
利用反射光谱及模拟多光谱数据定量反演北方潮土有机质含量

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:基于北京市52个潮土样本的高光谱数据和Landsat TM、环境减灾卫星(HJ)影像的波段响应函数,生成宽波段多光谱模拟数据,对比分析了室内实测光谱数据、宽波段模拟数据与土壤有机质含量的相关性,筛选敏感波段,利用偏最小二乘法构建北方潮土有机质含量预测模型。研究表明:在宽波段模拟数据建立的模型中,由Landsat TM模拟数据的差值土壤指数(DSI)、比值土壤指数(RSI)、归一化土壤指数(NDSI)及其第3波段共同构建的模型最优,其决定系数与均方根误差分别为0.586和0.280;与实测光谱数据相比,模拟数据的最佳预测模型,均优于除一阶微分、弓曲差以外的其他10种高光谱模型。因此,利用多光谱数据预测潮土有机质含量是可行的。

关键词: 有机质 潮土 多光谱 高光谱 偏最小二乘

 全文链接 请求原文
基于NIR-Red光谱特征空间的作物水分指数

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:水分含量是表征作物水分胁迫生理状况的重要指标,及时有效地监测作物水分含量对于评估作物水分亏缺平衡,指导农业生产灌溉具有重要意义。基于NIR-Red二维光谱特征空间,尝试构建一种新的作物水分监测指数PWI来估算作物水分含量。以冬小麦作物植被水分含量估算为尝试对象。首先,利用地面实测小麦冠层高光谱数据,结合对应卫星光谱响应函数,模拟当前常用卫星HJ-CCD和ZY-3多光谱数据;然后,对基于NIR-Red二维光谱特征空间的现有植被指数PDI(垂直干旱指数)和PVI(垂直植被指数)进行改进,通过比值变换的方法构建新的指数PWI来估算冬小麦植株含水量(VWC)。结果显示:基于模拟的HJ-CCD和ZY-3卫星宽波段多光谱数据生成的PWI估算小麦VWC具有良好的效果,R2分别达到0.684和0.683,均达到了极显著水平。利用检验样本得到冬小麦VWC估算的R2和RMSE分别为0.764和0.764,3.837%和3.840%,这表明应用提出的新指数PWI估测作物含水量具有一定可行性。同时,也为当前利用主要国产卫星遥感数据HJ-CCD和ZY-3开展作物水分遥感监测应用提供了一种新方法。

关键词: NIR-Red光谱特征空间 光谱响应函数 植株含水量 冬小麦 PWI

 全文链接 请求原文
最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:冬小麦叶面积指数(leaf area index,LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines,LS-SVM)方法和高光谱数据对不同条件下冬小麦LAI的估算能力。在用主成分分析法(principal component analysis,PCA)对PHI航空数据降维的基础上,利用实测LAI数据和高光谱反射率数据,构建LS-SVM模型,采用独立变量法,分别估算不同株型品种、不同生育时期、不同氮素和水分处理条件下的冬小麦LAI,并与传统NDVI模型反演结果对比。结果显示,每种条件下的LS-SVM模型都具有比NDVI模型更高的决定系数和更低的均方根误差值,即反演精度高于相应的NDVI模型。NDVI模型对不同株型品种、不同氮素和水分条件下冬小麦LAI估算精度不稳定,LS-SVM则表现出较好的稳定性。表明LS-SVM方法利用高光谱反射率数据对于不同条件下的冬小麦LAI反演具有良好的学习能力和普适性。

关键词: 最小二乘支持向量机 叶面积指数 高光谱 普适性 冬小麦

 全文链接 请求原文
冬小麦叶面积指数遥感反演方法比较研究

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:叶面积指数(leaf area index,LAI)是反映作物生长状况和进行产量预测预报的主要指标之一,对诊断作物生长状况具有重要意义。遥感技术为大面积、快速监测植被LAI提供了有效途径。利用高光谱遥感影像,结合田间同步实验数据,探讨不同方法对冬小麦叶面积指数遥感反演的能力。介绍了支持向量机、离散小波变换、连续小波变换和主成分分析四种LAI反演方法。分别利用上述四种方法构建冬小麦LAI反演模型,并对不同算法反演的LAI模型进行了真实性检验。结果显示,支持向量机非线性回归模型精度最高,对冬小麦LAI估算能力最强,反演值与实测值拟合的决定系数为0.823 4、均方根误差为0.419 5。离散小波变换法和主成分分析法都是基于特征提取和数据降维,其多元变量回归分析对LAI估算能力相近,决定系数分别为0.697 1和0.692 4,均方根误差分别为0.605 8和0.554 1。连续小波变换法回归模型精度最低,不适宜直接用其小波系数来反演LAI。结果表明,非线性支持向量机模型最适宜用于研究区域的冬小麦LAI反演。

关键词: 叶面积指数 高光谱 支持向量机 小波变换 主成分分析

 全文链接 请求原文
高光谱成像技术在果蔬品质与安全无损检测中的原理及应用

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:水果和蔬菜的品质与安全是消费者最为关心的问题。传统的化学检测方法是一种费时费力的破坏性检测技术。随着成像和光谱技术的快速发展,高光谱成像技术已经广泛应用于农产品品质与安全的快速无损检测中。高光谱成像技术融合了传统的成像和光谱技术的优点,可以同时获取被检测物体的空间信息和光谱信息,因此该技术既可以像检测物体的外部品质,又可以像光谱技术一样检测物体的内部品质和品质安全。目前,已经有大量的基于高光谱成像技术检测水果和蔬菜品质与安全的研究性论文发表,为了深入了解高光谱成像技术的检测原理并跟踪国内外最新的研究进展,综述了高光谱成像技术在水果和蔬菜外部品质、内部品质和品质安全检测中的原理、发展和应用。另外,还简要介绍和讨论了高光谱成像系统的构成、常用的数据分析方法、发展趋势及面临的挑战。

关键词: 高光谱成像技术 水果 蔬菜 品质 安全 无损检测

 全文链接 请求原文
基于热点效应的不同株型小麦LAI反演

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:针对小麦株型对LAI反演精度的制约,利用地面实测的多角度数据,提出采用热点指数反演高精度的不同株型小麦LAI。通过分析京411紧凑型和中优9507披散型两种株型小麦在红光(670nm)和近红外波段(800和860nm)的二向反射光谱特征,借鉴热暗点指数HDS和归一化热暗点信息指数NDHD,构建了改进的归一化热暗点指数MNDHD和热暗点比值指数HDRI两个新热点指数。将HDS,NDHD,MNDHD和HDRI与NDVI,SR和EVI相乘得到的热点组合指数用于不同株型小麦LAI的反演。分析得出对紧凑型小麦京411,由860nm近红外波段的NDVI与MNDHD和HDRI的组合指数反演的LAI精度分别为0.9431和0.909 2;对披散型小麦中优9507,由800nm近红外波段的SR与HDRI和MNDHD的组合指数获得的LAI反演精度分别为0.964 8和0.895 6。表明基于冠层的热点效应反演不同株型小麦LAI的方法可行,多角度遥感数据在作物结构参数提取方面比常规观测数据更具优势。

关键词: 作物株型 热点指数 叶面积指数 反演

 全文链接 请求原文
基于多角度成像数据的新型植被指数构建与叶绿素含量估算

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:叶绿素含量的快速估算对于及时了解作物的长势、病虫害监测以及产量的评估都具有重要意义。利用自主研发的多角度成像观测系统获取了不同生育期玉米的高光谱影像,精确地提取出主平面内各个观测角度下玉米冠层的反射率。通过对ACRM模型模拟值和实测值的分析,计算出玉米冠层红波段下的热点-暗点指数(HDS),并利用该指数对TCARI进行改进,提出一个基于多角度观测的新型植被指数HDTCARI,最后使用多角度高光谱成像数据对其进行了地面验证。结果表明,HD-TCARI能够减小LAI对叶绿素估算的影响,当叶绿素浓度大于30μg·cm-2,HD-TCARI与LAI的相关性R2仅为26.88%~28.72%;当叶绿素浓度较高时,HD-TCARI具有抗"饱和"的特性在LAI在1~6之间变化时,HD-TCARI与叶绿素浓度的线性关系R2较TCARI提高了约9%左右。利用多角度高光谱成像数据对HD-TCARI进行地面验证,其与叶绿素浓度的线性关系(R2=66.74%)明显优于TCARI所建立的估算模型(R2=39.92%),证明了HD-TCARI指数具有更好地估算叶绿素浓度的潜力。

关键词: 多角度成像 热点-暗点 植被指数 ACRM模型 叶绿素含量

 全文链接 请求原文
液态样本近红外光谱测量中的光程变化误差消减方法研究

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:以蔗糖溶液为研究对象,利用近红外光谱分别测量4,5和6mm光程下不同浓度蔗糖溶液的透反射光谱,研究采用矢量归一化、基线偏移校正、多元散射校正、标准正态变量变换、一阶导数5种预处理方法消除光程差异的影响,并结合PLS方法建立校正集模型。与原始光谱的PLS模型相比,五种预处理方法均对模型的预测精度有不同程度的提高,其中,多元散射校正结合PLS方法建立的模型最优,使原始光谱的主成分数PC由6下降为3,决定系数R2由0.891 278提高到0.987 535,交互验证决定系数R2CV由0.888 374提高到0.983 343,校正标准偏差RMSEC由1.704%下降到0.89%,交互验证的校正标准偏差RMSECV由1.827%下降到1.05%,预测集样本的相关系数由0.950 89上升到0.976 22,预测标准偏差由0.014 36下降为0.01。结果表明,五种预处理方法中,多元散射校正法能够消除光程差异的干扰,提高模型的预测精度,改善稳定性。

关键词: 近红外光谱 光程 预处理 偏最小二乘

 全文链接 请求原文
LED组合光谱对水培生菜矿物质吸收的影响

光谱学与光谱分析 2014 EI SCI 北大核心 CSCD

摘要:在植物工厂全密闭环境中水培种植大速生生菜,以光谱比例可调节的LED灯板为植物生长光源,应用电感耦合等离子体原子发射光谱技术(ICP-AES),研究了红蓝LED组合光谱下生菜对K,P,Ca,Mg,Na,Fe,Mn,Zn,Cu,B,Mo等11种营养元素的吸收特性。结果表明:(1)与叶绿素生理吸收波峰(峰值450和660nm)对应的单一或组合光谱均可增强水培生菜根对Na,Fe,Mn,Cu,Mo元素的吸收能力,且单一红光光谱的促进作用最为显著,四种元素含量分别为荧光灯全光谱下的7.8,4.2,5.3,11.0倍;(2)根对K和B元素的吸收量在荧光灯全光谱下达到最大分别为10.309mg·g-1和32.6μg·g-1,而在红、蓝单一或组合光谱下吸收能力降低;(3)单一蓝色光谱下根对Ca和Mg元素的吸收受到抑制,分别比荧光灯对照降低35%,33%;(4)生菜在30%蓝光+70%红光的光谱条件下生物量最高,而在20%蓝光+80%红光条件下对Ca,Mg,Na,Fe,Mn,Zn,B七种元素的累积量达到最大值。试验结果为水培生菜光源光谱选择及营养液配方调节提供了理论依据。

关键词: LED 光谱成分 ICP-AES技术 生菜 矿质元素

 全文链接 请求原文