Improvement of Plant Regeneration from Immature Embryos of Wheat Infected by Agrobacterium tumefaciens

文献类型: 外文期刊

第一作者: Tao Li-li

作者: Tao Li-li;Yin Gui-xiang;Du Li-pu;Shi Zheng-yuan;She Mao-yun;Xu Hui-jun;Ye Xing-guo

作者机构:

关键词: wheat;immature embryos;Agrobacterium tumefaciens;transformation;genotypes;plant regeneration

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2011 年 10 卷 3 期

页码:

收录情况: SCI

摘要: Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn't be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.

分类号:

  • 相关文献

[1]Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Zhang Wei,Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xiao Le-le,Ye Xing-guo,Fan Rong. 2015

[2]Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat (Triticum aestivum L.). Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xu Hui-jun,Ye Xing-guo,Ren Xian,Li Jia-rui. 2014

[3]EFFECTS OF SOIL DROUGHT STRESS ON PLANT REGENERATION EFFICIENCY AND ENDOGENOUS HORMONE LEVELS OF IMMATURE EMBRYOS IN WHEAT (&ITTRITICUM AESTIVUM&IT L.). Bie, Xiaomin,Wang, Ke,Liu, Chang,Du, Lipu,Mao, Xinguo,Ye, Xingguo,Bie, Xiaomin,Liu, Yongwei. 2017

[4]Efficient regeneration and transformation of Spathiphyllum cannifolium. Yu, Bo,Liao, Feixiong,Liu, Jinmei,Sun, Yingbo,Huang, Lili.

[5]Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Li, P,Hanania, U,Sahar, N,Mawassi, M,Gafny, R,Sela, I,Tanne, E,Perl, A.

[6]Regeneration and production of transgenic Lilium longiflorum via Agrobacterium tumefaciens. Liu, Juhua,Zhang, Jing,Xu, Biyu,Jia, Caihong,Zhang, Jianbin,Tan, Guanglan,Jin, Zhiqiang.

[7]Improvement of soybean transformation via Agrobacterium tumefaciens methods involving alpha-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis. Zhang, Yan-Min,Liu, Zi-Hui,Yang, Rui-Juan,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Hua-Ning,Zhang, Hong-Mei,Di, Rui,Zhao, Qing-Song,Zhang, Meng-Chen.

[8]Microscopic observations of strawberry plant colonization by a GFP-labelled strain of Fusarium oxysporum f. sp. fragariae. Yuan, Hongbo,Ling, Xitie,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Yao, Shu,Zhang, Baolong.

[9]Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant-Agrobacterium tumefaciens interaction. Zhang, Yan-Min,Zhang, Hong-Mei,Liu, Zi-Hui,Guo, Xiu-Lin,Li, Hui-Cong,Li, Guo-Liang,Jiang, Chun-Zhi,Zhang, Meng-Chen.

[10]Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Clarke, Jihong Liu,Spetz, Carl,Haugslien, Sissel,Xing, Shaochen,Dees, Merete W.,Blystad, Dag-Ragnar,Xing, Shaochen,Dees, Merete W.,Moe, Roar. 2008

[11]Improvement of Agrobacterium-mediated transformation efficiency of maize (Zea mays L.) genotype Hi-II by Optimizing Infection and Regeneration Conditions. Xu, You,Ren, Wen,Liu, Ya,Zhao, Jiuran,Xu, You. 2016

[12]Research Progress on Transformation Maize Mediated by Agrobacterithm Tumefaciens. Li, Xiuping,Li, Xiuping,Jiang, Lijing,Liu, Na. 2011

[13]Agrobacterium-mediated multiple gene transformation in rice using a single vector. Cao, MX,Huang, JQ,Wei, ZM,Yao, QH,Wan, CZ,Lu, JA. 2005

[14]Efficient transformation of Penicillium chrysogenum mediated by Agrobacterium tumefaciens LBA4404 for cloning of Vitreoscilla hemoglobin gene. Sun, CB,Kong, QL,Xu, WS. 2002

[15]Study on transformation of cysteine proteinase inhibitor gene into cabbage (Brassica oleracea var. capitata L.). Lei, Jian Jun,Yuan, Song Hong,Yang, Wen Jie,Qiong, Li Cheng,Ying, Fu You. 2006

[16]Regeneration of Chinese cabbage transgenic plants expressing antibacterial peptide gene and cowpea trypsin inhibitor gene. Zhao, Junliang,Liang, Aihua,Zhu, Zhen,Tang, Yixiong. 2006

[17]Overexpression of TaNHX2 enhances salt tolerance of 'composite' and whole transgenic soybean plants. Cao, Dong,Liu, Xiaobing,Cao, Dong,Hou, Wensheng,Liu, Wei,Yao, Weiwei,Wu, Cunxiang,Han, Tianfu,Cao, Dong. 2011

[18]Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. Jones, H. D.,Li, K. X.,He, Y.,Chen, S.,Chen, X. M.,Wang, D. S.,Xia, L. Q.,Wang, D. W.. 2010

[19]Expression of alfalfa antifungal peptide gene and enhance of resistance to Verticillium dahliae in upland cotton. Zhang, Haiping,Wang, Xuede,Shao, Mingyan,Yuan, Shuna,Ni, Mi,Zhang, Haiping.

[20]Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE. Yang, F. P.,Wang, L. H.,Wang, J. W.,He, X. Y.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Wang, J. W.,Zhang, X. K.,Shang, X. W.,He, Z. H..

作者其他论文 更多>>