您好,欢迎访问上海市农业科学院 机构知识库!

基于改进YOLOv8卷积神经网络的稻田苗期杂草检测方法

文献类型: 中文期刊

作者: 林宗缪 1 ; 马超 2 ; 胡冬 2 ;

作者机构: 1.上海市质量监督检验技术研究院

2.上海市农业科学院农业科技信息研究所

关键词: YOLOv8;卷积神经网络;苗期杂草;目标检测

期刊名称: 湖北农业科学

ISSN: 0439-8114

年卷期: 2024 年 008 期

页码: 17-22

收录情况: 北大核心

摘要: 针对田间自然环境拍摄下稻田背景复杂,苗期杂草图像尺寸过小、识别定位不准确等问题,提出了一种改进YOLOv8卷积神经网络的苗期杂草检测方法。参照PASCAL VOC数据集格式,构建了一套专用的数据集。首先,在网络卷积过程中加入DenseNet(密集连接网络)更好地对杂草特征进行提取,优化梯度消失问题。然后,添加CBAM(Convolutional block attention module)注意力机制改善模型对小尺寸的敏感度。最后,使用WIOU(Weighted intersection over union)损失函数来优化原网络中的损失函数,提升模型对检测目标的定位能力。在试验中,将改进的算法与Faster R-CNN、SSD(Single shot multiBox detector)以及原始YOLOv8等算法进行了性能对比。结果显示,改进算法明显优于其他算法,在测试集上的平均精度均值和检测速度分别达97.0%和100.3帧/s。这种高精度和快速的检测能力满足了精准农业中对快速、精准检测的需求。该算法为机械设备快速识别苗期杂草、精准喷洒农药提供了重要的理论和技术支持。

  • 相关文献

[1]基于改进YOLOv8卷积神经网络的蟹味菇检测方法. 林宗缪,马超,胡冬. 2024

[2]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[3]基于改进YOLOv7-Tiny的轻量化百香果检测方法. 涂智荣,凌海英,李帼,陆声链,钱婷婷,陈明. 2024

[4]基于轻量化卷积神经网络的改进模型与验证. 李润龙,王运圣,徐识溥,刘勇. 2020

[5]基于卷积神经网络的黄瓜白粉病智能识别算法研究. 旦真旺姆,全淼儿,钱婷婷,石称华,刘哲辉,常丽英. 2023

作者其他论文 更多>>