文献类型: 中文期刊
作者: 袁涛 1 ; 胡冬 1 ; 马超 1 ; 李琳一 1 ; 郑秀国 1 ; 钱戴玲 1 ;
作者机构: 1.上海市农业科学院农业科技信息研究所;上海市浦东新区农业农村综合监管事务中心
关键词: 杂草识别;目标检测;深度学习;YOLOv4
期刊名称: 上海农业学报
ISSN: 1000-3924
年卷期: 2023 年 39 卷 006 期
页码: 109-117
收录情况: 北大核心 ; CSCD
摘要: 针对当前精准农业中智能除草设备工作时需要精确快速识别稻田杂草的问题,提出了一种基于YOLOv4算法的稻田杂草检测方法.该方法参照PASCAL VOC数据集格式,构建了稻田杂草目标检测数据集,用深度可分离卷积代替原有的标准卷积,并将逆残差组件(Inverted Residual Unit,IRU)代替CSP-Darknet中的残差组件(Residual Unit,RU),使模型减少参数数量,提高了检测速度.此外,将用K-means算法聚类得到的边界框尺寸应用到各尺度网络层,在路径聚合网络(Path Aggregation Network,PANet)的自适应特征池输出后添加生成对抗网络(Generative Adversarial Network,GAN)噪声层,提高了模型检测精度.将改进的模型在GPU服务器上进行算法训练,并与原始YOLOv4算法进行模型性能的试验对比.结果表明:改进的算法在测试集上的平均精度均值(mean Average Precision,mAP)比原始算法高出4%,达到97%;检测速度提高了12.1帧/s,达到60.3帧/s,改进效果明显.该算法具有实时性好、精度高、鲁棒性强的优点,可以更好地实现智能除草设备对稻田杂草的检测,极大节约人力、物力的投入.
- 相关文献
[1]基于改进YOLOv8卷积神经网络的稻田苗期杂草检测方法. 林宗缪,马超,胡冬. 2024
[2]基于改进YOLOv8卷积神经网络的蟹味菇检测方法. 林宗缪,马超,胡冬. 2024
[3]基于改进YOLOv7-Tiny的轻量化百香果检测方法. 涂智荣,凌海英,李帼,陆声链,钱婷婷,陈明. 2024
[4]基于卷积神经网络的黄瓜白粉病智能识别算法研究. 旦真旺姆,全淼儿,钱婷婷,石称华,刘哲辉,常丽英. 2023
作者其他论文 更多>>
-
基于改进YOLOv8n卷积神经网络的玉米雄穗检测方法
作者:胡冬;班松涛;马超;田明璐;袁涛;李琳一;庄洁
关键词:YOLOv8n;玉米雄穗;CBAM;PConv;GhostNetV2
-
上海地区蓝莓连栋塑料大棚无土栽培技术
作者:沈育良;郑秀国
关键词:蓝莓;塑料大棚;无土栽培;肥水管理;病虫害防治;花果管理;上海地区
-
基于改进YOLOv8卷积神经网络的稻田苗期杂草检测方法
作者:林宗缪;马超;胡冬
关键词:YOLOv8;卷积神经网络;苗期杂草;目标检测
-
基于改进YOLOv8卷积神经网络的蟹味菇检测方法
作者:林宗缪;马超;胡冬
关键词:YOLOv8;卷积神经网络;蟹味菇;目标检测;CBAM
-
基于图像识别技术发掘水稻耐旱性QTL
作者:李恩熙;冯芳君;马超;胡冬;田明璐;班松涛;李琳一;刘鸿艳;吴文嫱;马孝松
关键词:水稻;绿叶率;图像识别;耐旱性;QTL定位
-
植物工厂环境条件下生菜的产量与品质评价
作者:钱婷婷;郑秀国;许叶颖;杨娟;宋一鹏
关键词:植物工厂;生菜水培;产量;品质
-
基于数字图像处理的不结球白菜表型性状分析
作者:胡冬;马超;章毅颖
关键词:不结球白菜;数字图像处理;表型性状;DUS