您好,欢迎访问浙江省农业科学院 机构知识库!

The tRNA thiolation-mediated translational control is essential for plant immunity

文献类型: 外文期刊

作者: Zheng, Xueao 1 ; Chen, Hanchen 1 ; Deng, Zhiping 7 ; Wu, Yujing 1 ; Zhong, Linlin 8 ; Wu, Chong 1 ; Yu, Xiaodan 1 ; Chen, Qiansi 2 ; Yan, Shunping 1 ;

作者机构: 1.Hubei Hongshan Lab, Wuhan, Peoples R China

2.Zhengzhou Tobacco Res Inst CNTC, Zhengzhou, Peoples R China

3.Huazhong Agr Univ, Coll Life Sci & Technol, Wuhan, Peoples R China

4.Guangdong Lab Lingnan Modern Agr, Shenzhen Branch, Shenzhen, Peoples R China

5.Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen, Peoples R China

6.Huazhong Agr Univ, Shenzhen Inst Nutr & Hlth, Shenzhen, Peoples R China

7.Zhejiang Acad Agr Sci, Inst Virol & Biotechnol, State Key Lab Managing Biot & Chem Threats Qual &, Hangzhou, Peoples R China

8.Huazhong Agr Univ, Coll Hort & Forestry Sci, Key Lab Hort Plant Biol, Minist Educ, Wuhan, Peoples R China

关键词: plant immunity; translation; tRNA thiolation; NPR1; Arabidopsis; A. thaliana

期刊名称:ELIFE ( 影响因子:7.7; 五年影响因子:8.3 )

ISSN: 2050-084X

年卷期: 2024 年 13 卷

页码:

收录情况: SCI

摘要: Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.

  • 相关文献
作者其他论文 更多>>