您好,欢迎访问上海市农业科学院 机构知识库!

Metabolic engineering of rice endosperm for betanin biosynthesis

文献类型: 外文期刊

作者: Tian, Yong-Sheng 1 ; Fu, Xiao-Yan 1 ; Yang, Zun-Qiu 1 ; Wang, Bo 1 ; Gao, Jian-Jie 1 ; Wang, Ming-Qing 2 ; Xu, Jing 1 ; H 1 ;

作者机构: 1.Shanghai Acad Agr Sci, Biotechnol Res Inst, Shanghai Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China

2.Shanghai Normal Univ, Coll Life Sci, Shanghai 200234, Peoples R China

关键词: betanin biosynthesis; biofortification; food additives; multigene metabolic engineering; rice endosperm

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN: 0028-646X

年卷期: 2020 年 225 卷 5 期

页码:

收录情况: SCI

摘要: Betanin has been widely used as an additive for many centuries, and its use has increased because of its market application as an additive, high free radical scavenging activity, and safety, health-promoting properties. The main source of betanin is red beet, but many factors notably affect the yield of betanin from red beets. Betanin is not produced in cereal grains. Thus, developing biofortified crops with betanin is another alternative to health-promoting food additives. Here, rice endosperm was bioengineered for betanin biosynthesis by introducing three synthetic genes (meloS, BvDODA1S, and BvCYP76AD1S). The overexpression of these genes driven by rice endosperm-specific promoter established the betanin biosynthetic pathways in the endosperm, resulting in new types of germplasm - 'Betanin Rice' (BR). The BR grains were enriched with betanin and had relatively high antioxidant activity. Our results proved that betanin can be biosynthesized de novo in rice endosperm by introducing three genes in the committed betanin biosynthetic pathway. The betanin-fortified rice in this study can be used as a functional grain to promote health and as a raw material to process dietary supplements.

  • 相关文献
作者其他论文 更多>>
  • Synthesis of betanin by expression of the core betalain biosynthetic pathway in carrot

    作者:Wang, Bo;Wang, Yahui;Deng, Yuanjie;Xiong, Aisheng;Wang, Bo;Yao, Quanhong

    关键词:Daucus carota L.; Betanin; Biosynthesis; Metabolic engineering; Bioforti fication

  • The complete degradation of 1,2-dichloroethane in Escherichia coli by metabolic engineering

    作者:Deng, Yong-Dong;Zhang, Wen -Hui;Zuo, Zhi-Hao;Zhang, Hao;Xu, Jing;Gao, Jian- Jie;Wang, Bo;Li, Zhen-Jun;Fu, Xiao-Yan;Wang, Li -Juan;Wang, Yu;Tian, Yong-Sheng;Peng, Ri-He;Yao, Quan-Hong;Deng, Yong-Dong;Zhang, Wen -Hui;Zuo, Zhi-Hao;Zhang, Hao;Xu, Jing;Gao, Jian- Jie;Wang, Bo;Li, Zhen-Jun;Fu, Xiao-Yan;Wang, Li -Juan;Wang, Yu;Tian, Yong-Sheng;Peng, Ri-He;Yao, Quan-Hong

    关键词:Bioremediation; Engineered bacteria; Environmental pollution; Metabolic engineering; Synthetic biology

  • Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice

    作者:Li, Zhenjun;Gao, Jianjie;Wang, Bo;Zhang, Hao;Tian, Yongsheng;Peng, Rihe;Yao, Quanhong

    关键词:2-nitroaniline; Old Yellow Enzyme; Phytoremediation; Reactive oxygen species; Saccharomyces cerevisiae

  • Biosynthesis of melatonin from l-tryptophan by an engineered microbial cell factory

    作者:Wang, Lijuan;Deng, Yongdong;Gao, Jianjie;Wang, Bo;Han, Hongjuan;Li, Zhenjun;Zhang, Wenhui;Wang, Yu;Fu, Xiaoyan;Peng, Rihe;Yao, Quanhong;Tian, Yongsheng;Xu, Jing;Wang, Lijuan;Deng, Yongdong;Peng, Rihe;Yao, Quanhong;Tian, Yongsheng;Xu, Jing

    关键词:Biosynthesis; Melatonin; l-Tryptophan (l-Trp); Escherichia coli; Metabolic engineering

  • Effects of Light Intensity on Growth and Quality of Lettuce and Spinach Cultivars in a Plant Factory

    作者:Miao, Chen;Wang, Hong;Zhang, Yongxue;Cui, Jiawei;Zhang, Hongmei;Jin, Haijun;Lu, Panling;He, Lizhong;Zhou, Qiang;Yu, Jizhu;Ding, Xiaotao;Yang, Shaojun;Xu, Jing

    关键词:indoor cultivation; LED light intensity; plant development; photosynthesis; nutrient content; tipburn

  • Metabolic engineering of Escherichia coli for 2,4-dinitrotoluene degradation

    作者:Zhang, Wen-Hui;Deng, Yong-Dong;Zuo, Zhi-Hao;Tian, Yong-Sheng;Xu, Jing;Wang, Bo;Wang, Li-Juan;Han, Hong-Juan;Li, Zhen-Jun;Wang, Yu;Yao, Quan-Hong;Gao, Jian-Jie;Fu, Xiao-Yan;Peng, Ri-He;Zhang, Wen-Hui;Deng, Yong-Dong;Zuo, Zhi-Hao;Tian, Yong-Sheng;Xu, Jing;Wang, Bo;Wang, Li-Juan;Han, Hong-Juan;Li, Zhen-Jun;Wang, Yu;Yao, Quan-Hong;Gao, Jian-Jie;Fu, Xiao-Yan;Peng, Ri-He;Chen, Zhi-Feng

    关键词:4-Dinitrotoluene; Re-synthesize gene; Complete degradation; Bioremediation; Escherichia coli

  • Creation of Environmentally Friendly Super "Dinitrotoluene Scavenger" Plants

    作者:Gao, Jian-Jie;Li, Zhen-Jun;Wang, Li-Juan;Xu, Jing;Wang, Bo;Fu, Xiao-Yan;Han, Hong-Juan;Zhang, Wen-Hui;Deng, Yong-Dong;Wang, Yu;Zuo, Zhi-Hao;Peng, Ri-He;Tian, Yong-Sheng;Yao, Quan-Hong;Gao, Jian-Jie;Li, Zhen-Jun;Wang, Li-Juan;Xu, Jing;Wang, Bo;Fu, Xiao-Yan;Han, Hong-Juan;Zhang, Wen-Hui;Deng, Yong-Dong;Wang, Yu;Zuo, Zhi-Hao;Peng, Ri-He;Tian, Yong-Sheng;Yao, Quan-Hong;Gao, Jian-Jie;Li, Zhen-Jun;Wang, Li-Juan;Xu, Jing;Wang, Bo;Fu, Xiao-Yan;Han, Hong-Juan;Zhang, Wen-Hui;Deng, Yong-Dong;Wang, Yu;Zuo, Zhi-Hao;Peng, Ri-He;Tian, Yong-Sheng;Yao, Quan-Hong;Zhu, Bo

    关键词:2,4-dinitrotoluene (2,4-DNT); carbon neutrality; complete degradation; rapid phytoremediation; sustainable development goals