您好,欢迎访问吉林省农业科学院 机构知识库!

Bioaccumulation, Metabolism and the Toxic Effects of Chlorfenapyr in Zebrafish (Danio rerio)

文献类型: 外文期刊

作者: Chen, Xiangguang 1 ; Zheng, Junyue 1 ; Teng, Miaomiao 2 ; Zhang, Jie 1 ; Qian, Le 1 ; Duan, Manman 1 ; Zhao, Feng 1 ; Zha 1 ;

作者机构: 1.China Agr Univ, Coll Sci, Innovat Ctr Pesticide Res, Dept Appl Chem, Beijing 100193, Peoples R China

2.Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China

3.Jilin Acad Agr Sci, Inst Plant Prod, Changchun 130033, Peoples R China

关键词: bioaccumulation; zebrafish; chlorfenapyr; tralopyril; metabolomics

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2021 年 69 卷 29 期

页码:

收录情况: SCI

摘要: Chlorfenapyr is widely used as an insecticide/miticide. Tralopyril, the active metabolite of chlorfenapyr, is used as an antifouling biocide in antifouling systems, and negatively affects aquatic environments. However, it is unclear whether tralopyril is a metabolite of chlorfenapyr in aquatic vertebrates, and there is little data on the bioaccumulation and toxicity of chlorfenapyr to aquatic vertebrates. In this study, the bioaccumulation and elimination of chlorfenapyr in zebrafish were assessed, and tralopyril, the active metabolite of chlorfenapyr, was determined. The effects of chronic exposure to chlorfenapyr on zebrafish liver and brain oxidative damage, apoptosis, immune response, and metabolome were investigated. These results showed that chlorfenapyr has a high bioaccumulation in zebrafish, with bioaccumulation factors of 864.6 and 1321.9 after exposure to 1.0 and 10 pg/L chlorfenapyr for 21 days, respectively. Chlorfenapyr at these concentrations also rapidly accumulated in zebrafish, reaching 615.5 and 10336 mu g/ kg on the second and third days of exposure, respectively. Chlorfenapyr was degraded to tralopyril in zebrafish; therefore, both chlorfenapyr and tralopyril should be considered when evaluating the risk of chlorfenapyr to aquatic organisms. In addition, chronic exposure caused oxidative damage, apoptosis, and immune disorders in zebrafish liver. Chronic exposure also altered the levels of endogenous metabolites in liver and brain. After 9 days of depuration, some indicators of oxidative damage, apoptosis, and immunity returned to normal levels, but the concentration of endogenous metabolites in zebrafish liver was still altered. Overall, these results provide useful information for evaluating the toxicity and environmental fate of chlorfenapyr in aquatic vertebrates.

  • 相关文献
作者其他论文 更多>>