您好,欢迎访问甘肃省农业科学院 机构知识库!

Interspecific complementary and competitive interactions between intercropped maize and faba bean

文献类型: 外文期刊

作者: Li, L 1 ; Yang, SC 2 ; Li, XL 2 ; Zhang, FS 2 ; Christie, P 2 ;

作者机构: 1.Beijing Agr Univ, Dept Plant Nutr, Beijing 100094, Peoples R China

2.Beijing Agr Univ, Dept Plant Nutr, Beijing 100094, Peoples R China; Gansu Acad Agr Sci, Inst Soils & Fertilizers, Lanzhou 730070, Peoples R China; Queens Univ Belfast, Dept Agr & Environm Sci, Belfast BT9 5PX, Antrim, North Ireland

关键词: maize;biological competition;grain;intercropping;interspecific hybridization;interspecific competition;root systems;effects;yields;faba beans;Zea mays;Pisum;Pisum sativum;Vicia;Vicia faba;Beijing;China;Gansu

期刊名称:PLANT AND SOIL ( 影响因子:4.192; 五年影响因子:4.712 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Interspecific complementary and competitive interactions between maize (cv. Zhongdan No. 2) and faba bean (Vicia faba cv. Linxia Dacaidou) in maize/faba bean intercropping systems were assessed in two field experiments in Gansu province, NW China, plus a microplot experiment in one treatment of one of the field experiments in which root system partitions were used to determine interspecific root interactions. Intercropping effects were detected, with land equivalent ratio values of 1.21-1.23 basedon total (grain+straw) yield and 1.13-1.34 based on grain yield. When two rows of maize were intercropped with two rows of faba bean, both total yield and grain yield of both crop species were significantly higher than those of sole maize and faba bean on an equivalent area basis. When two rows of pea (Pisum sativum cv. Beijing No. 5) were intercropped with two rows of faba bean, neither total yield nor grain yield of faba bean was higher than of sole faba bean on an equivalent area basis. Interspecificcompetition between maize and faba bean was relatively weak, with mean relative crowding coefficients of 0.99-1.02 for maize and 1.55-1.59 for faba bean. The microplot experiment in which partitions were placed between root systems showed a significantpositive yield effect on maize when the root systems intermingled freely (no partition) or partly (400 mesh nylon net partition) compared with no interspecific root interaction (plastic sheet partition).

  • 相关文献

[1]Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Li, L,Sun, JH,Zhang, FS,Li, XL,Yang, SC,Rengel, Z. 2001

[2]Yield advantage and water saving in maize/pea intercrop. Mao, Lili,Zhang, Lizhen,Li, Long,Li, Weiqi,Sun, Jianhao,van der Werf, Wopke. 2012

[3]Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Xia, Hai-Yong,Wang, Zhi-Gang,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Xia, Hai-Yong,Christie, Peter.

[4]Root distribution and interactions between intercropped species. Li, L,Sun, JH,Zhang, FS,Guo, TW,Bao, XG,Smith, FA,Smith, SE.

[5]Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Xia, Hai-Yong,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Christie, Peter.

[6]Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. Li, L,Sun, JH,Zhang, FS,Li, XL,Rengel, Z,Yang, SC. 2001

[7]Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Xia HaiYong,Xue YanFang,Zhang FuSuo,Li Long,Zhao JianHua,Sun JianHao,Bao XingGuo,Eagling, Tristan. 2013

[8]Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Li, Long,Li, Long,Zhang, Fusuo,Sun, Jianhao. 2011

[9]Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Li, WX,Li, L,Sun, JH,Guo, TW,Zhang, FS,Bao, XG,Peng, A,Tang, C. 2005

[10]Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Li, WX,Li, L,Sun, JH,Zhang, FS,Christie, P. 2003

[11]High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Liu, Yi-Xiang,Zhang, Wei-Ping,Li, Xiao-Fei,Christie, Peter,Li, Long,Sun, Jian-Hao.

[12]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[13]Intercropping enhances soil carbon and nitrogen. Cong, Wen-Feng,Li, Long,Zhang, Fu-Suo,Cong, Wen-Feng,van der Werf, Wopke,Hoffland, Ellis,Six, Johan,Sun, Jian-Hao,Bao, Xing-Guo.

[14]Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Wang, Zhi-gang,Li, Xiao-fei,Jin, Xin,Christie, Peter,Li, Long,Bao, Xing-guo,Zhao, Jian-hua,Sun, Jian-hao.

[15]Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Li, Long,Li, Shu-Min,Sun, Jian-Hao,Zhou, Li-Li,Bao, Xing-Guo,Zhang, Hong-Gang,Zhang, Fu-Suo.

[16]Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Marschner, P.,Li, L.,Bao, X. G.,Sun, J. H.,Zhang, F. S.. 2007

[17]Effect of phosphorus application and strip-intercropping on yield and some wheat-grain components in a wheat/maize/potato intercropping system. Zhang, Enhe,Huang, Gaobao,Zhang, Lijun,Wang, Gang,Zhang, Lijun,He, Chunyu,Zhang, Bo,Wang, Qi,Qiang, Shengjun. 2011

[18]Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Zhang, F. S.,Marschner, P.,Fan, F. L.,Gao, H. M.,Bao, X. G.,Sun, J. H.,Li, L.. 2007

[19]Comparison of dynamic changes of endogenous hormones between calli derived from mature and immature embryos of maize. Wang, Henning,Zhang, Jinwen,Jia, Xiaoxia,Liang, Huiguang,Kong, Weiping,Zhang, Xinhui. 2011

[20]Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE. Yang, F. P.,Wang, L. H.,Wang, J. W.,He, X. Y.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Wang, J. W.,Zhang, X. K.,Shang, X. W.,He, Z. H..

作者其他论文 更多>>