您好,欢迎访问甘肃省农业科学院 机构知识库!

Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients

文献类型: 外文期刊

作者: Li, L 1 ; Sun, JH 2 ; Zhang, FS 2 ; Li, XL 2 ; Yang, SC 2 ; Rengel, Z 2 ;

作者机构: 1.China Agr Univ, Dept Plant Nutr, Beijing 100094, Peoples R China

2.China Agr Univ, Dept Plant Nutr, Beijing 100094, Peoples R China; Univ Western Australia, Dept Soil Sci & Plant Nutr, Crawley, WA 6009, Australia; Gansu Acad Agr Sci, Inst Soils & Fertilizers, Lanzhou 730070, Peoples R China

关键词: intercropping;interspecific competition;interspecific facilitation;maize;nutrient uptake;soybean;wheat;yield advantage

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN: 0378-4290

年卷期: 2001 年 71 卷 2 期

页码:

收录情况: SCI

摘要: This study investigated yield advantage of intercropping systems and compared N, P and K uptake by wheat, maize, and soybean in two field experiments in Gansu province. At Baiyun site the field experiment compared two P levels (0 and 53 kg P ha(-1)), two planting densities for wheat and maize, and three cropping treatments (wheat/maize intercropping, sole wheat and sole maize). The design for the wheat/soybean intercropping experiment at Jingtan site was similar, except that fertilization rates were 0 and 33 kg P ha(-1) without plant density treatment. Yield and nutrient acquisitions by intercropped wheat, maize and soybean were all significantly greater than for sole wheat, maize and soybean with the exception of K acquisition by maize. Intercropping advantages in yield (40-70% for wheat intercropped with maize and 28-30% for wheat intercropped with soybean) and in nutrient acquisition by wheat resulted from both the border- and inner-row effects. The relative contribution to increasing biomass was two-thirds from the border-row effect and one-third from the inner-row effect. Similar trends were noted for N, P and K accumulation. During the co-growth period, lasting for about 80 days from maize or soybean emergence to wheat harvesting, yield and nutrient acquisition by intercropped wheat increased significantly while those by maize or soybean intercropped with wheat decreased significantly. Aggressivities of wheat relative to either maize (0.26-1.63 of A(wm)) or soybean (0.35-0.95 of A(ws)) revealed the greater competitive ability of wheat than either maize or soybean. The nutrient competitive ratio, 1.09-7.54 for wheat relative to maize and 1.2-8.3 for wheat relative to soybean, showed that wheat had greater capability to acquire nutrients compared to soybean and maize. Comparison of overall N and K acquisition by intercropping with weighted means of those of sole cropping revealed interspecific facilitation in nutrient acquisition during co-growth. (C) 2001 Elsevier Science B.V. All rights reserved.

  • 相关文献

[1]Root distribution and interactions between intercropped species. Li, L,Sun, JH,Zhang, FS,Guo, TW,Bao, XG,Smith, FA,Smith, SE.

[2]Interspecific complementary and competitive interactions between intercropped maize and faba bean. Li, L,Yang, SC,Li, XL,Zhang, FS,Christie, P.

[3]Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Li, Long,Li, Long,Zhang, Fusuo,Sun, Jianhao. 2011

[4]Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Li, WX,Li, L,Sun, JH,Guo, TW,Zhang, FS,Bao, XG,Peng, A,Tang, C. 2005

[5]Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Li, WX,Li, L,Sun, JH,Zhang, FS,Christie, P. 2003

[6]Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Xia, Hai-Yong,Wang, Zhi-Gang,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Xia, Hai-Yong,Christie, Peter.

[7]Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Xia, Hai-Yong,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Christie, Peter.

[8]Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. Li, L,Sun, JH,Zhang, FS,Li, XL,Rengel, Z,Yang, SC. 2001

[9]Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Xia HaiYong,Xue YanFang,Zhang FuSuo,Li Long,Zhao JianHua,Sun JianHao,Bao XingGuo,Eagling, Tristan. 2013

[10]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[11]Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping. Zhang, Wei-Ping,Liu, Guang-Cai,Zhang, Li-Zhen,Li, Long,Liu, Guang-Cai,Sun, Jian-Hao,Weiner, Jacob.

[12]Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Zhang, Wei-Ping,Liu, Guang-Cai,Zhang, Li-Zhen,Zhang, Fang-Fang,Li, Long,Sun, Jian-Hao,Fornara, Dario,Liu, Guang-Cai.

[13]Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N-2 fixation of faba bean. Li, Yu-Ying,Yu, Chang-Bin,Cheng, Xu,Li, Chun-Jie,Zhang, Fu-Suo,Li, Long,Li, Yu-Ying,Sun, Jian-Hao,Lambers, Hans,Li, Long. 2009

[14]The role of complementarity and selection effects in P acquisition of intercropping systems. Li, Xiao-Fei,Zhang, Wei-Ping,Wang, Le-Hua,Tian, Xiu-Li,Li, Long,Wang, Cheng-Bao,Yang, Si-Cun,Jiang, Wan-Li,van Ruijven, Jasper. 2018

[15]High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Liu, Yi-Xiang,Zhang, Wei-Ping,Li, Xiao-Fei,Christie, Peter,Li, Long,Sun, Jian-Hao.

[16]Intercropping enhances soil carbon and nitrogen. Cong, Wen-Feng,Li, Long,Zhang, Fu-Suo,Cong, Wen-Feng,van der Werf, Wopke,Hoffland, Ellis,Six, Johan,Sun, Jian-Hao,Bao, Xing-Guo.

[17]Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Wang, Zhi-gang,Li, Xiao-fei,Jin, Xin,Christie, Peter,Li, Long,Bao, Xing-guo,Zhao, Jian-hua,Sun, Jian-hao.

[18]Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Li, Long,Li, Shu-Min,Sun, Jian-Hao,Zhou, Li-Li,Bao, Xing-Guo,Zhang, Hong-Gang,Zhang, Fu-Suo.

[19]Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Marschner, P.,Li, L.,Bao, X. G.,Sun, J. H.,Zhang, F. S.. 2007

[20]Effect of phosphorus application and strip-intercropping on yield and some wheat-grain components in a wheat/maize/potato intercropping system. Zhang, Enhe,Huang, Gaobao,Zhang, Lijun,Wang, Gang,Zhang, Lijun,He, Chunyu,Zhang, Bo,Wang, Qi,Qiang, Shengjun. 2011

作者其他论文 更多>>