您好,欢迎访问上海市农业科学院 机构知识库!

Functional Characterization of aroA from Rhizobium leguminosarum with Significant Glyphosate Tolerance in Transgenic Arabidopsis

文献类型: 外文期刊

作者: Han, Jing 1 ; Tian, Yong-Sheng 1 ; Xu, Jing 1 ; Wang, Li-Juan 1 ; Wang, Bo 1 ; Peng, Ri-He 1 ; Yao, Quan-Hong 1 ;

作者机构: 1.Shanghai Acad Agr Sci, Biotechnol Res Inst, Dept Shanghai Key Lab Agr Genet & Breeding, Shanghai 201106, Peoples R China

关键词: 5-Enolpyruvylshikimate-3-phosphate synthase;Rhizobium leguminosarum;glyphosate tolerant;transgenic Arabidopsis

期刊名称:JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY ( 影响因子:2.351; 五年影响因子:2.65 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroA_(R. leguminosarum)) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroA_(R. leguminosarum) is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroA_(R. leguminosarum) gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  • 相关文献

[1]Novel Glyphosate-Resistant aroA Gene from Paracoccus denitrificans in Transgenic Arabidopsis. Tian, Y. -S.,Xiong, A. -S.,Tian, Y. -S.,Yao, Q. -H.,Peng, R. -H.,Xu, J.,Tian, Y. -S.,Xing, X. -J..

[2]Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp triphenylmethane reductase in transgenic Arabidopsis. Fu, Xiao-Yan,Zhao, Wei,Xiong, Ai-Sheng,Tian, Yong-Sheng,Zhu, Bo,Peng, Ri-He,Yao, Quan-Hong. 2013

[3]Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae. You, Shuang-Hong,Zhu, Bo,Han, Hong-Juan,Wang, Bo,Peng, Ri-He,Yao, Quan-Hong.

[4]Functional characterization of Class II 5-enopyruvylshikimate-3-phosphate synthase from Halothermothrix orenii H168 in Escherichia coli and transgenic Arabidopsis. Tian, Yong-Sheng,Xu, Jing,Xiong, Ai-Sheng,Zhao, Wei,Gao, Feng,Fu, Xiao-Yan,Peng, Ri-He,Yao, Quan-Hong.

[5]Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice. Fu, Xiao-Yan,Zhu, Bo,Han, Hong-Juan,Zhao, Wei,Tian, Yong-Sheng,Peng, Ri-He,Yao, Quan-Hong.

[6]Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Peng, Rihe,Fu, Xiaoyan,Tian, Yongsheng,Zhao, Wei,Zhu, Bo,Xu, Jing,Wang, Bo,Wang, Lijuan,Yao, Quanhong.

[7]Functional Characterization of 5-Enopyruvylshikimate-3-Phosphate Synthase from Alkaliphilus metalliredigens in Transgenic Arabidopsis. Xing, Xiao-Juan,Sun, Sheng,Xing, Xiao-Juan,Tian, Yong-Sheng,Peng, Ri-He,Xu, Jing,Zhao, Wei,Yao, Quan-Hong.

作者其他论文 更多>>