您好,欢迎访问广东省农业科学院 机构知识库!

Whole-genome sequence analyses of Glaesserella parasuis isolates reveals extensive genomic variation and diverse antibiotic resistance determinants

文献类型: 外文期刊

作者: Wan, Xiulin 1 ; Li, Xinhui 2 ; Osmundson, Todd 3 ; Li, Chunling 4 ; Yan, He 1 ;

作者机构: 1.South China Univ Technol, Sch Food Sci & Engn, Guangzhou, Peoples R China

2.Univ Wisconsin, Dept Microbiol, La Crosse, WI 54601 USA

3.Univ Wisconsin, Dept Biol, La Crosse, WI 54601 USA

4.Guangdong Acad Agr Sci, Inst Anim Hlth, Guangzhou, Peoples R China

关键词: Glaesserella parasuis; Mobile genetic elements; Phylogeny; Whole-genome sequencing; Antibiotic resistance genes

期刊名称:PEERJ ( 影响因子:2.984; 五年影响因子:3.369 )

ISSN: 2167-8359

年卷期: 2020 年 8 卷

页码:

收录情况: SCI

摘要: Background. Glaesserella parasuis (G. parasuis) is a respiratory pathogen of swine and the etiological agent of Glasser's disease. The structural organization of genetic information, antibiotic resistance genes, potential pathogenicity, and evolutionary relationships among global G. parasuis strains remain unclear. The aim of this study was to better understand patterns of genetic variation, antibiotic resistance factors, and virulence mechanisms of this pathogen. Methods. The whole-genome sequence of a ST328 isolate from diseased swine in China was determined using Pacbio RS II and Illumina MiSeq platforms and compared with 54 isolates from China sequenced in this study and 39 strains from China and eigtht other countries sequenced by previously. Patterns of genetic variation, antibiotic resistance, and virulence mechanisms were investigated in relation to the phylogeny of the isolates. Electrotransformation experiments were performed to confirm the ability of pYL1-a plasmid observed in ST328-to confer antibiotic resistance. Results. The ST328 genome contained a novel Tn6678 transposon harbouring a unique resistance determinant. It also contained a small broad-host-range plasmid pYL1 carrying aac(6')-Ie-aph(2 '')-Ia and bla ROB-1; when transferred to Staphylococcus aureus RN4220 by electroporation, this plasmid was highly stable under kanamycin selection. Most (85.13-91.74%) of the genetic variation between G. parasuis isolates was observed in the accessory genomes. Phylogenetic analysis revealed two major subgroups distinguished by country of origin, serotype, and multilocus sequence type (MLST). Novel virulence factors (gigP, malQ, and gmhA) and drug resistance genes (norA, bacA, ksgA, and bcr) in G. parasuis were identified. Resistance determinants (sul2, aph(3 '')Ib, norA, bacA, ksgA, and bcr) were widespread across isolates, regardless of serovar, isolation source, or geographical location. Conclusions. Our comparative genomic analysis of worldwide G. parasuis isolates provides valuable insight into the emergence and transmission of G. parasuis in the swine industry. The result suggests the importance of transposon-related and/or plasmid-related gene variations in the evolution of G. parasuis.

  • 相关文献
作者其他论文 更多>>