您好,欢迎访问吉林省农业科学院 机构知识库!

Effects of wheat and soybean stubbles on soil sickness in continuous cropping of cucumber

文献类型: 外文期刊

作者: Feng, T. 1 ; Wang, Y. Y. 1 ; Zhang, Y. H. 1 ; Shi, X. H. 1 ; Qin, C. H. 1 ; Zhang, S. A. 1 ; Jin, S. C. 1 ; Zhang, H. 1 ; Zh 1 ;

作者机构: 1.Jilin Acad Agr Sci, Inst Econ Bot, Gongzhuling 136105, Peoples R China

2.Binzhou Vocat Coll, Ecoagr Res Ctr, Changchun, Peoples R China

3.Jilin Prov Econ Management Cadre Coll, Changchun, Peoples R China

关键词: Bacteria;crop stubble;cucumber;fungi;Glycine max;PCR-DDGE;replanting soil;soil enzyme activity;soil microorganism;soybean;Triticum aestivum;wheat;yield

期刊名称:ALLELOPATHY JOURNAL ( 影响因子:0.962; 五年影响因子:0.99 )

ISSN: 0971-4693

年卷期: 2016 年 39 卷 1 期

页码:

收录情况: SCI

摘要: In pot culture, we studied the effects of wheat and soybean stubbles in 3-ratios (0.5, 1, 2%) on the soil microbial community structure in cucumber (Cucumis sativus L.) and their effects on yield. The PCR-DGGE (Denatured gradient gel electrophoresis) was used to analyse the changes in the rhizosphere microflora. It was found that the bacterial diversity increased and the fungal diversity decreased, with the addition of wheat and soybean stubble. Besides, the addition of wheat and soybean crop stubbles also increased the yield of cucumber, the yield levels varied with the type and quantity of crop stubbles added

  • 相关文献

[1]Gain of virulence by Soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host. Wang, Y.,Hajimorad, M. R.,Wang, Y..

[2]Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Li, Wenbin,Ma, Yansong,Liu, Zhangxiong,Guo, Yong,Qiu, Lijuan,Ma, Yansong,Luan, Xiaoyan,Reif, Jochen C.,Jiang, Yong,Wen, Zixiang,Wang, Dechun,Han, Tianfu,Wu, Cunxiang,Sun, Shi,Wei, Shuhong,Wang, Shuming,Yang, Chunming,Wang, Huicai,Yang, Chunming,Zhang, Mengchen,Lu, Weiguo,Xu, Ran,Zhou, Rong,Zhou, Xinan,Wang, Ruizhen,Sun, Zudong,Chen, Huaizhu,Zhang, Wanhai,Sun, Bincheng,Wu, Jian,Han, Dezhi,Yan, Hongrui,Hu, Guohua,Liu, Chunyan,Fu, Yashu,Chen, Weiyuan,Guo, Tai,Zhang, Lei,Yuan, Baojun.

[3]Genetic relationships between Chinese, Japanese, and Brazilian soybean gene pools revealed by simple sequence repeat (SSR) markers. Yamanaka, Naoki,Sato, Hiroyuki,Yang, Zhenyu,Xu, Dong He,Catelli, Lizandra Lucy,Binneck, Eliseu,Arrabal Arias, Carlos Alberto,Abdelnoor, Ricardo Vilela,Nepomuceno, Alexandre Lima.

[4]Selection of soybean elite cultivars based on phenotypic and genomic characters related to lodging tolerance. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun.

[5]Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max (L.) Merr.). Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Guan, Rongxia,Guo, Yong,Chang, Ruzhen,Qiu, Li-Juan,Fan, Xuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun,Chen, Pengyin.

[6]A Comparative Proteomics Analysis of Soybean Cotyledon and Unifoliolate Leaves Under Heat (Chilling) Treatments. Jiang, Hong-wei,Xin, Da-wei,Shan, Cai-yun,Wang, Jin-hui,Chen, Qing-shan,Jiang, Hong-wei,Liu, Chun-yan,Hu, Guo-hua,Xin, Da-wei,Zhu, Rong-sheng,Hu, Zhen-bang,Chen, Qing-shan,Qiu, Hong-mei.

[7]Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Lin, Chunjing,Dong, Yingshan,Lin, Chunjing,Zhang, Chunbao,Zhao, Hongkun,Xing, Shaochen,Wang, Yumin,Liu, Xiaodong,Yuan, Cuiping,Zhao, Limei,Dong, Yingshan,Zhang, Chunbao,Zhao, Limei,Dong, Yingshan.

[8]Quantitative trait loci analysis of soluble sugar contents in soybean. Wang, Yueqiang,Chen, Pengyin,Zhang, Bo.

[9]Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang, L.,Wang, Y. M.,Yuan, C. P.,Zhang, Y. Y.,Li, H. Y.,Dong, Y. S.,Zhao, H. K.,Yan, X. F.,Li, Q. Y.. 2015

[10]RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Yang, Xiangdong,Niu, Lu,Zhang, Wei,Yang, Jing,Xing, Guojie,He, Hongli,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan. 2018

[11]Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha. Liu, Zhangxiong,Htwe, Nang Myint Phyu Sin,Xing, Lili,Li, Yinghui,Guan, Rongxia,Chang, Ruzhen,Qiu, Lijuan,Li, Jun,Fa, Xuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Chen, Lijun,Wang, Dechun. 2017

[12]Adaptation and Application of Soybean Phenology Model in the North China Spring Soybean Producing Area. Wang, Can,Zhang, Baogui,Yan, Xiaoyan. 2012

[13]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[14]Comparison of Genetic Diversity between Chinese and American Soybean (Glycine max (L.)) Accessions Revealed by High-Density SNPs. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Guan, Rongxia,Guo, Yong,Qiu, Lijuan,Wen, Zixiang,Wang, Dechun,Fan, Xuhong,Wang, Shuming. 2017

[15]Stability analysis of seven agronomic traits for soybean [(Glycine max (L.) Merr.] Tokachi nagaha and its derived cultivars using the AMMI model. Liu, Zhangxiong,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu. 2017

[16]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[17]Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Shi Xiaodi,Li Jingyan,Guo Shuntang,Wang Shuming,Zhang Lei,Qiu Lijuan,Han Tianfu,Wang Qianyu,Chang Sam Kow-Ching.

[18]RNA-seq Analysis Reveals Ethylene-Mediated Reproductive Organ Development and Abscission in Soybean (Glycine max L. Merr.). Cheng, Yun-Qing,Liu, Jian-Feng,Liu, Chunming,Liu, Qiang,Yang, Xiangdong,Ma, Rui.

[19]Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Zhao, J,Fu, JB,Liao, H,He, Y,Nian, H,Hu, YM,Qiu, LJ,Dong, YS,Yan, XL.

[20]Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Islam, Md. Matiul,Islam, Md. Matiul,Ishibashi, Yushi,Iwaya-Inoue, Mari,Nakagawa, Andressa C. S.,Tomita, Yuki,Zhao, Xin,Arima, Susumu,Zheng, Shao-Hui.

作者其他论文 更多>>