您好,欢迎访问江苏省农业科学院 机构知识库!

Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean

文献类型: 外文期刊

作者: Chen Hua-tao 1 ; Chen Xin 1 ; Wu Bing-yue 1 ; Yuan Xing-xing 1 ; Zhang Hong-mei 1 ; Cui Xiao-yan 1 ; Liu Xiao-qing 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Vegetable Crops, Nanjing 210014, Jiangsu, Peoples R China

关键词: soybean;GmNHXs;GmKEAs;abiotic stress;expression pattern

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 6 期

页码:

收录情况: SCI

摘要: Sodium toxicity and potassium insufficient are important factors affecting the growth and development of soybean in saline soil. As the capacity of plants to maintain a high cytosolic, K+/Na+ ratio is the key determinant of tolerance under salt stress. The aims of the present study were to identify and analyse expression patterns of the soybean K+ efflux antiporter (KEA) gene and Na+/H+ antiporter (NHX) gene family, and to explore their roles under abiotic stress. As a result, 12 soybean GmKEAs genes and 10 soybean GmNHXs genes were identified and analyzed from soybean genome. Interestingly, the novel soybean KEA gene Glyma16g32821 which encodes 11 transmembrane domains were extremely up-regulated and remained high level until 48 h in root after the excessive potassium treatment and lack of potassium treatment, respectively. The novel soybean NHXgene Glyma09g02130 which encodes 10 transmembrane domains were extremely up-regulated and remained high level until 48 h in root with NaCl stress. Imaging of subcellular locations of the two new Glyma16g32821-GFP and Glyma09g02130-GFP fusion proteins indicated all plasma membrane localizations of the two novel soybean genes. The 3D structures indicated that the two soybean novel proteins Glyma09g02130 (NHX) and Glyma16g32821 (KEA) all belong to the cation/hydrogen antiporter family.

  • 相关文献

[1]Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.. Diao, Wei-Ping,Wang, Shu-Bin,Liu, Jin-Bing,Pan, Bao-Gui,Guo, Guang-Jun,Wei, Ge,Diao, Wei-Ping,Snyder, John C.. 2016

[2]Identification and expression patterns of UDP-glycosyltransferase (UGT) genes from insect pest Athetis lepigone (Lepidoptera: Noctuidae). Xu, Ji-Wei,Li, Meng-Ya,Zhu, Xiu-Yun,Ma, Ji-Fang,Dong, Zhi-Ping,Xu, Lu. 2017

[3]Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa. Duan, Weike,Song, Xiaoming,Liu, Tongkun,Huang, Zhinan,Ren, Jun,Hou, Xilin,Du, Jianchang,Li, Ying,Du, Jianchang. 2015

[4]Biochemistry and molecular characterisation of chlorpyrifos resistance in field strains of the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). He, Ming,He, Peng,Ai, Zhen-Xian,Jiang, Zi-Qiong,Long, Yu-Ning,Zhang, Yue-Liang.

[5]Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia). Li, Hui,Han, Jin-Long,Chang, You-Hong,Lin, Jing,Yang, Qing-Song.

[6]Structure, expression profile, and evolution of the sucrose synthase gene family in peach (Prunus persica). Zhang, Chunhua,Yu, Mingliang,Ma, Ruijuan,Shen, Zhijun,Zhang, Binbin,Korir, Nicholas Kibet.

[7]A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji. 2017

[8]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

[9]NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Shao, Hongbo,Shao, Hongbo,Shao, Hongbo,Wang, Hongyan,Tang, Xiaoli,Wang, Hongyan. 2015

[10]Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Wang, Hongyan,Wang, Honglei,Shao, Hongbo,Shao, Hongbo,Tang, Xiaoli. 2016

[11]Measuring Spatial and Temporal Ca2+ Signals in Arabidopsis Plants. Zhu, Xiaohong,Zhang, Shenyu,Zhang, Dayong,Feng, Ying,Liang, Gaimei,Zhu, Jian-Kang,Taylor, Aaron,Zhang, Dayong,Feng, Ying,Zhu, Jian-Kang. 2014

[12]Salinity Tolerance Mechanism of Osmotin and Osmotin-like Proteins: A Promising Candidate for Enhancing Plant Salt Tolerance. Qun Wan,Shao Hongbo,Xu Zhaolong,Liu Jia,Zhang Dayong,Huang Yihong,Shao Hongbo.

[13]Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Li, Jinhua,Su, Xiaoxing,Yang, Wei,Pan, Yu,Su, Chenggang,Zhang, Xingguo,Li, Jinhua,Su, Xiaoxing,Yang, Wei,Pan, Yu,Su, Chenggang,Zhang, Xingguo,Wang, Yinlei. 2018

[14]Characterization and expression profile of CaNAC2 pepper gene. Guo, Wei-Li,Chen, Ru-Gang,Yin, Yan-Xu,Gong, Zhen-Hui,Guo, Wei-Li,Chen, Bi-Hua,Du, Xiao-Hua,Zhang, Yu-Yuan,Wang, Shu-Bin. 2015

[15]Physiological and transcriptional responses in the iron-sulphur cluster assembly pathway under abiotic stress in peach (Prunus persica L.) seedlings. Song, Zhizhong,Yang, Yong,Xu, Jianlan,Ma, Ruijuan,Yu, Mingliang.

[16]A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Huang, Si Qi,Xiang, An Ling,Che, Li Ling,Li, Hui,Song, Jian Bo,Yang, Zhi Min,Chen, Song.

[17]Validation of reference genes for RT-qPCR normalization in Iris. lactea var. chinensis leaves under different experimental conditions. Gu, Chun-Sun,Lu, Xiao-Qing,Huang, Su-Zhen,Liu, Liang-Qin,Zhu, Xu-Dong,Deng, Yan-Ming.

[18]A novel nuclear protein phosphatase 2C negatively regulated by ABL1 is involved in abiotic stress and panicle development in rice. Li, Yu-Sheng,Huang, Sheng-Dong,Yang, Juan,Sun, Hui,Wang, Zhou-Fei,Duan, Min,Yang, Juan,Zhang, Hong-Sheng.

[19]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[20]The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots. Xu, Zhaolong,Liu, Xiaoqing,He, Xiaolan,Xu, Ling,Huang, Yihong,Shao, Hongbo,Zhang, Dayong,Shao, Hongbo,Tang, Boping,Ma, Hongxiang. 2017

作者其他论文 更多>>