您好,欢迎访问江苏省农业科学院 机构知识库!

The PpLTP1 Primary Allergen Gene is Highly Conserved in Peach and Has Small Variations in Other Prunus Species

文献类型: 外文期刊

作者: Ma, Ying-tao 1 ; Zhou, Xiang 1 ; Gao, Zhong-shan 1 ; Li, Xiong-wei 1 ; Jia, Hui-juan 1 ; Wu, Hong-xia 1 ; Xie, Rang-ji 1 ;

作者机构: 1.Zhejiang Univ, Dept Hort, State Agr Minist Lab Hort Plant Growth Dev & Qual, Hangzhou 310058, Zhejiang, Peoples R China

2.Zhejiang Univ, Allergy Res Ctr, Hangzhou 310058, Zhejiang, Peoples R China

3.Chinese Acad Agr Sci, Zhengzhou Fruit Res Inst, Zhengzhou, Peoples R China

4.Chinese Acad Agr Sci, Zhe

关键词: Prunus persica;Lipid transfer protein;Genetic diversity;Allele frequency;Peach subpopulation

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Peach lipid transfer protein (LTP1), Pru p 3.01, is a major allergen causing severe systemic reactions in peach allergic patients in Mediterranean countries and China. Significant expression variability has been reported among peach cultivars at both transcript and protein level. In this study, the allele diversity of the LTP1-encoding gene was assessed in a large set of peach cultivars by direct sequencing of the gene and its upstream region. Evolution of the LTP1-encoding genes in peach (Prunus persica) and three other Prunus species (Prunus kansuensis, Prunus mira, and Prunus davidiana) were also inferred. Sequence analysis revealed that LTP1-encoding genes are highly conserved among peach cultivars and wild peach. Three different allele sequences were obtained from 50 Prunus accessions on the basis of the upstream region of the LTP1-encoding gene and three allele specific markers were derived according to the polymorphic sites. These markers were used to test 316 peach cultivars, most of which clustered within the three main subpopulations of peach, 'Yu Lu', 'Hakuho' and landraces. The genotypic frequencies and allele frequencies in the oriental peach cultivars in these subpopulations except for 'Yu Lu' were found to be in Hardy-Weinberg equilibrium (P < 0.05). The dominant alleles were upLTP1-a in the 'Yu Lu' subpopulation and upLTP1-c in the 'Hakuho' subpopulation, allele upLTP1-b and allele upLTP1-c had the highest rates in the landraces, and the dominant allele in the three peach wild relatives was allele upLTP1-b. Furthermore, we found many light-responsive elements in the upstream region. Most of the polymorphic sites in Prunus species are located in the intron region. Phylogenetic analysis suggests that Prunus kansuensis KC311794 and Prunus mira KC311791 are related more closely to Prunus persica KC311795 than to Prunus davidiana KC311792 and KC311793. The allele sequences we derived on the basis of this variability were distributed unevenly, indicating the need to study allergenicity in different subpopulations and the association between allele sequences and allergenicity.

  • 相关文献

[1]Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Li, Zhao,Xu, Huijun,Du, Lipu,Zhang, Zengyan,Zhou, Miaoping.

[2]The role of wheat jasmonic acid and ethylene pathways in response to Fusarium graminearum infection. Sun, Yuxin,Xiao, Jin,Jia, Xinping,Ke, Peibei,He, Liqiang,Cao, Aizhong,Wang, Haiyan,Wu, Yufeng,Gao, Xiquan,Wang, Xiue,Jia, Xinping.

[3]Expressed sequence tag-simple sequence repeat-based molecular variance in two Salicornia (Amaranthaceae) populations. Xu, Z. L.,Ali, Z.,Yi, J. X.,He, X. L.,Zhang, D. Y.,Yu, G. H.,Ma, H. X.,Ali, Z.,Khan, A. A.,Ali, Z.,Khan, A. A.,Khan, I. A.. 2011

[4]Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE. Zhang, Yanping,Yu, Huaping,Han, Jian,Song, Changnian,Fang, Jinggui,Yu, Mingliang,Ma, Ruijuan.

[5]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[6]Differential expression of iron-sulfur cluster biosynthesis genes during peach flowering. Song, Z. -Z.,Zhang, B. -B.,Zhang, C. -H.,Ma, R. -J.,Yu, M. -L.,Song, Z. -Z.,Zhang, B. -B.,Zhang, C. -H.,Ma, R. -J.,Yu, M. -L..

[7]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

[8]Inbreeding and coancestry of the major commercial fresh market peach cultivars in China. Ma, Ruijuan,Yu, Mingliang,Du, Ping,Shen, Zhijun,Byrne, David H.. 2006

[9]Characterization of the miR165 family and its target gene Pp-ATHB8 in Prunus persica. Zhang, Chunhua,Guo, Lei,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Li, Xiaoying. 2012

[10]Effect of salicylic acid on freezing injury in peach floral organs and the expressions of CBF genes. Ma, R. J.. 2017

[11]Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Shen, Zhijun,Yu, Mingliang,Ma, Ruijuan,Confolent, Carole,Lambert, Patrick,Poessel, Jean-Luc,Quilot-Turion, Benedicte,Pascal, Thierry. 2013

[12]Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica). Song, Z. Z.,Ma, R. J.,Yu, M. L.. 2015

[13]Characteristics of the molecular diversity of the outer membrane protein A gene of Haemophilus parasuis. Tang, Cheng,Zhang, Bin,Yue, Hua,Yang, Falong,Hai, Quan,Chen, Xiaofei,Guo, Dingqian,Shao, Guoqing.

[14]Molecular characterization of porcine circovirus-like virus P1 in eastern China. Wen, Libin,Jiao, Fangfang,Zhang, Dan,Mao, Aihua,Liu, Chuanmin,Xie, Jianping,He, Kongwang,Wen, Libin,Jiao, Fangfang,Zhang, Dan,Mao, Aihua,Liu, Chuanmin,Xie, Jianping,He, Kongwang,Li, Yiming.

[15]Development of Ty1-copia retrotransposon-based SSAP molecular markers for the study of genetic diversity in peach. Jiao, Yun,Ma, Rui-juan,Shen, Zhi-jun,Yu, Ming-liang.

[16]Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Du, Pei,Zhuang, Lifang,Wang, Yanzhi,Yuan, Li,Wang, Qing,Wang, Danrui,Dawadondup,Tan, Lijun,Shen, Jian,Qi, Zengjun,Xu, Haibin,Zhao, Han,Chu, Chenggen.

[17]Genetic evidence of local adaption and long distance migration in Blumeria graminis f. sp hordei populations from China. Zhu, Jinghuan,Shang, Yi,Hua, Wei,Wang, Junmei,Jia, Qiaojun,Yang, Jianming,Zhou, Yijun,Liu, Mengdao.

[18]Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Yang, Xingping,Ren, Runsheng,Xu, Jinhua,Li, Pingfang,Zhang, Man,Liu, Guang,Yao, Xiefeng,Yang, Xingping,Ren, Runsheng,Xu, Jinhua,Li, Pingfang,Zhang, Man,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Ray, Rumiana,Kilian, Andrzej.

[19]Genetic Relationship of Loquat Analyzed by ISSR. Xu, C. M.,Shen, Z. J.,Liu, D.,Zhang, Z..

[20]Genetic Diversity and Structure of Lolium Species Surveyed on Nuclear Simple Sequence Repeat and Cytoplasmic Markers. Cai, Hongwei,Guan, Xuanli,Cai, Hongwei,Guan, Xuanli,Cai, Hongwei,Yuyama, Nana,Cai, Hongwei,Stewart, Alan,Ding, Chenglong,Xu, Nengxiang,Kiyoshi, Takako. 2017

作者其他论文 更多>>